首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8616篇
  免费   501篇
  国内免费   3篇
  9120篇
  2023年   21篇
  2022年   71篇
  2021年   116篇
  2020年   56篇
  2019年   92篇
  2018年   106篇
  2017年   115篇
  2016年   151篇
  2015年   281篇
  2014年   322篇
  2013年   557篇
  2012年   510篇
  2011年   504篇
  2010年   382篇
  2009年   326篇
  2008年   572篇
  2007年   535篇
  2006年   563篇
  2005年   534篇
  2004年   537篇
  2003年   502篇
  2002年   505篇
  2001年   113篇
  2000年   96篇
  1999年   139篇
  1998年   109篇
  1997年   95篇
  1996年   82篇
  1995年   75篇
  1994年   84篇
  1993年   78篇
  1992年   90篇
  1991年   79篇
  1990年   59篇
  1989年   57篇
  1988年   59篇
  1987年   44篇
  1986年   42篇
  1985年   42篇
  1984年   51篇
  1983年   35篇
  1982年   40篇
  1981年   36篇
  1980年   33篇
  1979年   39篇
  1978年   18篇
  1977年   25篇
  1976年   17篇
  1975年   19篇
  1973年   19篇
排序方式: 共有9120条查询结果,搜索用时 46 毫秒
991.
Mannan-binding protein (MBP) is a C-type serum lectin and activates complement through the lectin pathway when it binds to ligand sugars such as mannose, N-acetylglucosamine, and fucose on microbes. In addition, the vaccinia virus carrying the human MBP gene was shown to exhibit potent growth inhibitory activity toward human colorectal carcinoma, SW1116, cells in nude mice. We have proposed calling this activity MBP-dependent cell-mediated cytotoxicity (MDCC) (Ma, Y., Uemura, K., Oka, S., Kozutsumi, Y., Kawasaki, N., and Kawasaki, T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 371-375). In this study, the MBP ligands on the surface of SW1116 cells were characterized. Initial experiments involving plant lectins and anti-Lewis antibodies as inhibitors of MBP binding to SW1116 cells indicated that fucose plays a crucial role in the interaction. Subsequently, Pronase glycopeptides were prepared from whole cell lysates, and oligosaccharides were liberated by hydrazinolysis. After being tagged by pyridylamination, MBP ligand oligosaccharides were isolated with an MBP affinity column, and then their sequences were determined by mass spectrometry and tandem mass spectrometry after permethylation, in combination with endo-beta-galactosidase digestion and chemical defucosylation. The MBP ligands were shown to be large, multiantennary N-glycans carrying a highly fucosylated polylactosamine type structure. At the nonreducing termini, Le(b)/Le(a) or tandem repeats of the Le(a) structure prevail, a substantial proportion of which are attached via internal Le(x) or N-acetyllactosamine units to the trimannosyl core. The structures characterized are unique and distinct from those of other previously reported tumor-specific carbohydrate antigens. It is concluded that MBP requires clusters of tandem repeats of the Le(b)/Le(a) epitope for recognition.  相似文献   
992.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   
993.
In the present study, we examined signal transduction mechanism of reactive oxygen species (ROS) production and the role of ROS in angiotensin II-induced activation of mitogen-activated protein kinases (MAPKs) in rat neonatal cardiomyocytes. Among three MAPKs, c-Jun NH(2)-terminal kinase (JNK) and p38 MAPK required ROS production for activation, as an NADPH oxidase inhibitor, diphenyleneiodonium, inhibited the activation. The angiotensin II-induced activation of JNK and p38 MAPK was also inhibited by the expression of the Galpha(12/13)-specific regulator of G protein signaling (RGS) domain, a specific inhibitor of Galpha(12/13), but not by an RGS domain specific for Galpha(q). Constitutively active Galpha(12)- or Galpha(13)-induced activation of JNK and p38 MAPK, but not extracellular signal-regulated kinase (ERK), was inhibited by diphenyleneiodonium. Angiotensin II receptor stimulation rapidly activated Galpha(13), which was completely inhibited by the Galpha(12/13)-specific RGS domain. Furthermore, the Galpha(12/13)-specific but not the Galpha(q)-specific RGS domain inhibited angiotensin II-induced ROS production. Dominant negative Rac inhibited angiotensin II-stimulated ROS production, JNK activation, and p38 MAPK activation but did not affect ERK activation. Rac activation was mediated by Rho and Rho kinase, because Rac activation was inhibited by C3 toxin and a Rho kinase inhibitor, Y27632. Furthermore, angiotensin II-induced Rho activation was inhibited by Galpha(12/13)-specific RGS domain but not dominant negative Rac. An inhibitor of epidermal growth factor receptor kinase AG1478 did not affect angiotensin II-induced JNK activation cascade. These results suggest that Galpha(12/13)-mediated ROS production through Rho and Rac is essential for JNK and p38 MAPK activation.  相似文献   
994.
To clarify the beneficial effects of cilnidipine, an L- and N-type calcium channel blocker, which were clinically observed against diastolic dysfunction in hypertrophied hearts of hypertensive patients, we investigated the effects of cilnidipine on cardiac remodeling and enhanced gene expression in stroke-prone, spontaneously hypertensive rats in comparison with that of captopril, a well-known angiotensin-converting enzyme inhibitor, at threshold doses with little blood pressure lowering effect. The expression of type III collagen and beta/alpha-myosin heavy chain as well as transforming growth factor-beta, and basic fibroblast growth factor were suppressed by both treatments, indicating the prevention or amelioration of cardiac dysfunction. Such beneficial effects were much more intense with cilnidipine treatment than in captopril. These results indicate that Ca2+ is a key factor in the pathogenesis of cardiac remodeling in hypertension. One possible beneficial effect of cilnidipine in the prevention of cardiac dysfunction may be due to the decreased amount of growth factors such as transforming growth factor-beta and basic fibroblast growth factor via direct action for Ca2+ influx and also via inhibition of local renin-angiotensin system in the myocardium.  相似文献   
995.
Cigarette smoke extract induces endothelial cell injury via JNK pathway   总被引:5,自引:0,他引:5  
Cigarette smoking is the most crucial factor responsible for chronic obstructive pulmonary disease (COPD). The precise mechanisms of the development of the disease have, however, not been fully understood. Recently, impairment of pulmonary endothelial cells has been increasingly recognized as a critical pathophysiological process in COPD. To verify this hypothesis, we examined how cigarette smoke extract (CSE) damages human umbilical vein endothelial cells (HUVECs). CSE activated c-Jun N-terminal kinase (JNK), and treatment of HUVECs with SP600125, a specific inhibitor of the JNK pathway, significantly suppressed endothelial cell damage by CSE. In contrast, inhibition of the extracellular-regulated kinase or the p38 pathway did not affect the cytotoxicity of CSE. Furthermore, anti-oxidants superoxide dismutase and catalase reduced CSE-induced JNK phosphorylation and endothelial cell injury. These results indicate that CSE damages vascular endothelial cells through the JNK pathway activated, at least partially, by oxidative stress.  相似文献   
996.
Matsuno H  Furusawa H  Okahata Y 《Biochemistry》2005,44(7):2262-2270
Catalytic DNA cleavage reactions by an ATP-dependent deoxyribonuclease (DNase) from Micrococcus luteus were monitored directly with a DNA-immobilized 27-MHz quartz-crystal microbalance (QCM). The 27-MHz QCM is a very sensitive mass-measuring device in aqueous solution, as the frequency decreases linearly with increasing mass on the electrode at a nanogram level. Three steps in ATP-dependent DNA hydrolysis reactions, including (1) binding of DNase to the end of double-stranded DNA (dsDNA) on the QCM electrode (mass increase), (2) degradation of one strand of dsDNA in the 3' --> 5' direction depending on ATP (mass decrease), and (3) release of the enzyme from the nonhydrolyzed 5'-free-ssDNA (mass decrease), could be monitored stepwise from the time dependencies of QCM frequency changes. Kinetic parameters for each step were obtained as follows. The binding constant (K(a)) of DNase to the dsDNA was determined as (28 +/- 2) x 10(6) M(-)(1) (k(on) = (8.0 +/- 0.3) x 10(3) M (-)(1) s(-)(1) and k(off) = (0.29 +/-0.01) x 10(-)(3) s(-)(1)), and it decreased to (0.79 +/- 0.16) x 10(6) M(-)(1) (k'(on) = (2.3 +/- 0.2) x 10(3) M (-)(1) s(-)(1) and k'(off) = (2.9 +/- 0.1) x 10(-)(3) s(-)(1)) for the completely nonhydrolyzed 5'-free ssDNA. This is the reason the DNase bound to the dsDNA substrate can easily release from the nonhydrolyzed 5'-free-ssDNA after the complete hydrolysis of the 3' --> 5' direction of the complementary ssDNA. K(a) values depended on the DNA structures on the QCM, and the order of these values was as follows: the dsDNA having a 4-base-mismatched base-pair end (3) > the dsDNA having a 5' 15-base overhanging end (2) > the dsDNA having a blunt end (1) > the ssDNA having a 3'-free end (4) > the ssDNA having a 5'-free end (5). Thus, DNase hardly recognized the free 5' end of ssDNA. Michaelis-Menten parameters (K(m) for ATP and k(cat)) of the hydrolysis process also could be obtained, and the order of k(cat)/K(m) was as follows: the dsDNA having a blunt end (1) approximately the dsDNA having a 4-base-mismatched base-pair end (3) > the ssDNA having a free 3' end (4) > the ssDNA having a free 5' end (5). Thus, DNase could not recognize and not hydrolyze the free 5' end of ssDNA. The DNA hydrolysis reaction could be driven by dATP and GTP (purine base) as well as ATP, whereas the cleavage efficiency was very low driven with UTP, CTP (pyrimidine base), ADP, and AMP.  相似文献   
997.
The Otsuka Long-Evans Tokushima Fatty (OLETF) rat exhibits polygenic obesity, and one of quantitative trait loci (QTLs) responsible for a susceptibility to obesity in the OLETF, Nidd6/of, has been mapped to the approximately 10-cM genomic region between D1Rat166 and D1Rat90 on chromosome 1 in (OLETF x normal) F2 intercross. In this study, we have attempted to identify the causal gene for the Nidd6/of QTL. A Nidd6/of congenic strain, constructed by introgressing the OLETF allele on the mapped Nidd6/of region in the normal F344 rat strain, confirmed the existence of the Nidd6/of as obesity QTL. The Nidd6/of region was refined to a approximately 2.3-cM genomic region between D1Rat225 and D1Rat90, using informative recombinants selected from (Nidd6/of congenic x F344) F1 x Nidd6/of congenic backcross progenies. Among 46 genes located within the approximately 2.3-cM region, pancreatic lipase gene, Pnlip, was regarded as the most prominent and physiologically relevant positional candidate for the Nidd6/of QTL. We found that Pnlip possesses an OLETF allele-specific increase of mRNA levels in the pancreas, and that the OLETF allele is longer in variable number of tandem repeat (VNTR) within the 5'-flanking region than normal alleles. We further showed that the Nidd6/of QTL completely cosegregates with Pnlip VNTR in the informative recombinants from (Nidd6/of congenic x F344) F1 x Nidd6/of congenic backcross progenies. These results suggest that Pnlip is possible candidate for the Nidd6/of QTL.  相似文献   
998.
999.
Interaction of apolipoproteins (apo) with lipid surfaces plays crucial roles in lipoprotein metabolism and cholesterol homeostasis. To elucidate the thermodynamics of binding of apoA-I to lipid, we used lipid emulsions composed of triolein (TO) and egg phosphatidylcholine (PC) as lipoprotein models. Determination of the level of binding of wild-type (WT) apoA-I and some deletion mutants to large (120 nm diameter; LEM) and small (35 nm diameter; SEM) emulsions indicated that N-terminal (residues 44-65) and C-terminal (residues 190-243 and 223-243) deletions have large effects on lipid interaction, whereas deletion of the central region (residues 123-166) has little effect. Substitution of amino acids at either L230 or L230, L233, and Y236 with proline residues also decreases the level of binding, indicating that an alpha-helix conformation in this C-terminal region is required for efficient lipid binding. Calorimetry showed that binding of WT apoA-I to SEM generates endothermic heat (DeltaH approximately 30 kcal/mol) in contrast to the exothermic heat (ca. -85 kcal/mol) generated upon binding to LEM and egg PC small unilamellar vesicles (SUV). This exothermic heat arises from an approximately 25% increase in alpha-helix content, and it drives the binding of apoA-I to LEM and SUV. There is a similar increase in alpha-helix content of apoA-I upon binding to either SEM or SUV, but the binding of apoA-I to SEM is an entropy-driven process. These results suggest that the presence of a core triglyceride modifies the highly curved SEM surface packing and thereby the thermodynamics of apoA-I binding in a manner that compensates for the exothermic heat generated by alpha-helix formation.  相似文献   
1000.
A rapid induction of effector functions in memory T cells provides rapid and intensified protection against reinfection. To determine potential roles of IL-15 in early expansion and activation of memory CD8+ T cells in secondary immune response, we examined the cell division and cytotoxicity of memory CD8+ T cells expressing OVA(257-264)/Kb-specific TCR that were transferred into IL-15-transgenic (Tg) mice, IL-15 knockout (KO) mice, or control C57BL/6 mice followed by challenge with recombinant Listeria monocytogenes expressing OVA (rLM-OVA). In vivo CTL activities and expression of granzyme B of the transferred CD8+ T cells were significantly higher in the IL-15 Tg mice but lower in the IL-15 KO mice than those in control mice at the early stage after challenge with rLM-OVA. In contrast, there was no difference in the cell division in IL-15 Tg mice and IL-15 KO mice compared with those in control mice. In vivo administration of rIL-15 conferred robust protection against reinfection via induction of granzyme B in the memory CD8+ T cells. These results suggest that IL-15 plays an important role in early activation of memory CD8+ T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号