首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7244篇
  免费   414篇
  国内免费   3篇
  7661篇
  2023年   19篇
  2022年   62篇
  2021年   104篇
  2020年   53篇
  2019年   85篇
  2018年   96篇
  2017年   107篇
  2016年   139篇
  2015年   252篇
  2014年   290篇
  2013年   486篇
  2012年   469篇
  2011年   470篇
  2010年   342篇
  2009年   300篇
  2008年   504篇
  2007年   484篇
  2006年   503篇
  2005年   475篇
  2004年   471篇
  2003年   459篇
  2002年   452篇
  2001年   55篇
  2000年   46篇
  1999年   92篇
  1998年   100篇
  1997年   77篇
  1996年   72篇
  1995年   59篇
  1994年   71篇
  1993年   62篇
  1992年   43篇
  1991年   39篇
  1990年   19篇
  1989年   21篇
  1988年   33篇
  1987年   20篇
  1986年   21篇
  1985年   18篇
  1984年   28篇
  1983年   12篇
  1982年   28篇
  1981年   25篇
  1980年   14篇
  1979年   20篇
  1978年   7篇
  1977年   14篇
  1976年   7篇
  1975年   6篇
  1970年   5篇
排序方式: 共有7661条查询结果,搜索用时 11 毫秒
91.
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice   总被引:21,自引:0,他引:21  
We analyzed recessive mutants of two homeotic genes in rice, SUPERWOMAN1 (SPW1) and DROOPING LEAF (DL). The homeotic mutation spw1 transforms stamens and lodicules into carpels and palea-like organs, respectively. Two spw1 alleles, spw1-1 and spw1-2, show the same floral phenotype and did not affect vegetative development. We show that SPW1 is a rice APETALA3 homolog, OsMADS16. In contrast, two strong alleles of the dl locus, drooping leaf-superman1 (dl-sup1) and drooping leaf-superman2 (dl-sup2), cause the complete transformation of the gynoecium into stamens. In these strong mutants, many ectopic stamens are formed in the region where the gynoecium is produced in the wild-type flower and they are arranged in a non-whorled, alternate pattern. The intermediate allele dl-1 (T65), results in an increase in the number of stamens and stigmas, and carpels occasionally show staminoid characteristics. In the weakest mutant, dl-2, most of the flowers are normal. All four dl alleles cause midrib-less drooping leaves. The flower of the double mutant, spw1 dl-sup, produces incompletely differentiated organs indefinitely after palea-like organs are produced in the position where lodicules are formed in the wild-type flower. These incompletely differentiated organs are neither stamens nor carpels, but have partial floral identity. Based on genetic and molecular results, we postulate a model of stamen and carpel specification in rice, with DL as a novel gene controlling carpel identity and acting mutually and antagonistically to the class B gene, SPW1.  相似文献   
92.
Controlling cell proliferation during cell culturing is an effective way to improve the production yield in mammalian cell culture. We examined the effect of temperature shifts (TS) under pH control conditions in Chinese hamster ovary cells. When we shifted the culture temperature from 37 °C to 31 °C before a stationary phase at pH 6.8 (TS/pH 6.8), cell viability remained high, and the final human monoclonal antibody (hMab) concentration increased to 2.3 times that in the culture remaining at 37 °C. However, there were no significant effects on the cell viability or production yield with the same TS at pH 7.0 (TS/pH 7.0). The average specific hMab productivity and mRNA level of TS/pH 7.0 were the same as that of TS/pH 6.8. The control of cell growth by the TS or the addition of rapamycin was effective in the maintenance of cell viability, but there was no significant increase of the average specific hMab productivity in the culture where cell proliferation was controlled with rapamycin. The hMab mRNA concentration decreased to 55%–65% at a 37 °C culture with the addition of actinomycin D. In contrast, actinomycin D did not affect the mRNA level in the TS culture. This result suggested that the increase in the mRNA level in the TS condition was caused by an increase in mRNA stability. In this study, we show that TS can produce two unrelated effects: a prolongation of cell longevity and an improvement in mRNA stability.  相似文献   
93.
94.
Plasma oxidized low-density lipoprotein (OX-LDL) levels are elevated in patients with renal diseases, including diabetic nephropathy. We examined effects of OX-LDL on cell proliferation and extracellular matrix (ECM) production by using normal human mesangial cells. Furthermore, we examined possible involvement of peroxisome proliferator-activated receptor gamma (PPARgamma). Mesangial cell proliferation with OX-LDL, 9-hydroxy-10,12-octadecadienoic acid (9HODE), and 13-hydroxy-9,11-octadecadienoic acid (13HODE), the major components of OX-LDL, were determined by 5-bromo-2'-deoxyuridine (BrdU) or 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) incorporation. The effect of OX-LDL on mesangial cell proliferation with PD98059 pretreatment was determined by BrdU incorporation. Type IV collagen, fibronectin, and PPARgamma expression with OX-LDL or 9HODE or 13HODE was determined by Western blotting. Type IV collagen expression with antisense oligonucleotide against PPARgamma pretreatment was also determined by Western blotting. The effect of PD98059 pretreatment on PPARgamma expression was determined by Western blotting. In mesangial cells exposed to isolated OX-LDL from human plasma, BrdU incorporation was increased, and this increase was deleted by PD98059. Type IV collagen expression was significantly increased by OX-LDL. 9HODE and 13HODE increased BrdU and MTT incorporation into mesangial cells and also increased expressions of Type IV collagen and fibronection, the major components of ECM. PPARgamma expression in mesangial cells was stimulated by 9HODE. The reduction of PPARgamma synthesis by pretreatment of antisense oligonucleotide against PPARgamma remarkably attenuated Type IV collagen synthesis induced by 9HODE. PPARgamma expression induced by 9HODE was also reduced by PD98059 pretreatment. These findings demonstrate that 9HODE, the major component of OX-LDL, stimulates cell proliferation and ECM production of human mesangial cells. In addition, the stimulatory effects are, at least in part, mediated by PPARgamma, which may exist in downstream of ERK1/2 pathway.  相似文献   
95.
96.
Toll-like receptors (TLRs) play a key role in linking pathogen recognition with the induction of innate immunity. They have been implicated in the pathogenesis of chronic inflammatory diseases, representing potential targets for prevention/treatment. Vegetable-rich diets are associated with the reduced risk of several inflammatory disorders. In the present study, based on an extensive screening of vegetable extracts for TLR-inhibiting activity in HEK293 cells co-expressing TLR with the NF-κB reporter gene, we found cabbage and onion extracts to be the richest sources of a TLR signaling inhibitor. To identify the active substances, we performed activity-guiding separation of the principal inhibitors and identified 3-methylsulfinylpropyl isothiocyanate (iberin) from the cabbage and quercetin and quercetin 4′-O-β-glucoside from the onion, among which iberin showed the most potent inhibitory effect. It was revealed that iberin specifically acted on the dimerization step of TLRs in the TLR signaling pathway. To gain insight into the inhibitory mechanism of TLR dimerization, we developed a novel probe combining an isothiocyanate-reactive group and an alkyne functionality for click chemistry and detected the probe bound to the TLRs in living cells, suggesting that iberin disrupts dimerization of the TLRs via covalent binding. Furthermore, we designed a variety of iberin analogues and found that the inhibition potency was influenced by the oxidation state of the sulfur. Modeling studies of the iberin analogues showed that the oxidation state of sulfur might influence the global shape of the isothiocyanates. These findings establish the TLR dimerization step as a target of food-derived anti-inflammatory compounds.  相似文献   
97.
The breast and ovarian cancer suppressor BRCA1 acquires significant ubiquitin ligase activity when bound to BARD1 as a RING heterodimer. Although the activity may well be important for the role of BRCA1 as a tumor suppressor, the biochemical consequence of the activity is not yet known. Here we report that BRCA1-BARD1 catalyzes Lys-6-linked polyubiquitin chain formation. K6R mutation of ubiquitin dramatically reduces the polyubiquitin products mediated by BRCA1-BARD1 in vitro. BRCA1-BARD1 preferentially utilizes ubiquitin with a single Lys residue at Lys-6 or Lys-29 to mediate autoubiquitination of BRCA1 in vivo. Furthermore, mass spectrometry analysis identified the Lys-6-linked branched ubiquitin fragment from the polyubiquitin chain produced by BRCA1-BARD1 using wild type ubiquitin. The BRCA1-BARD1-mediated Lys-6-linked polyubiquitin chains are deubiquitinated by 26 S proteasome in vitro, whereas autoubiquitinated CUL1 through Lys-48-linked polyubiquitin chains is degraded. Proteasome inhibitors do not alter the steady state level of the autoubiquitinated BRCA1 in vivo. Hence, the results indicate that BRCA1-BARD1 mediates novel polyubiquitin chains that may be distinctly edited by 26 S proteasome from conventional Lys-48-linked polyubiquitin chains.  相似文献   
98.
We reported comprehensive screening for antigens (Ags) overexpressed on various carcinomas via isolation of human monoclonal antibodies (mAbs) that may be therapeutic in a previous paper (Proc. Natl. Acad. Sci. USA 105, 7287-7292, 2008). Twenty-one distinct Ags highly expressed on several carcinomas were identified and 356 mAbs with unique sequences turned out to bind to one of the 21 Ags. Among them CADM1/IGSF4 which had been originally referred to as tumor suppressor lung cancer 1 (TSLC1) was included. Therefore we examined the expression of CADM1 in lung cancers in this study. Eight different anti CADM1 mAbs were used for immunohistochemical analysis of 29 fresh lung cancer specimens. Staining patterns were categorized to six groups based on the extent of positive staining and the localization of stained portions. While overexpression of CADM1 was observed on the cell surface of adenocarcinomas at a high frequency, around 60%, positive stainings were rarely observed on that of other lung carcinomas including squamous cell carcinomas. Moreover, some clones among the eight mAbs gave different staining patterns from those by the other clones against the same fresh specimen, suggesting presence of variant forms of CADM1 differentiated by mAbs.  相似文献   
99.
The effects of the availability of light (high, medium and low) and soil water (wet and dry) on morphological and physiological traits responsible for whole plant carbon gain and ramet biomass accumulation were examined in a splitter-type clonal herbaceous species Primula sieboldii, a spring plant inhabiting broad range of light environments including open grassland and oak forest understory. Growth experiments were conducted for three genets originated from natural microhabitats differing in light and soil water availability. Ramets of a genet from high light and wet microhabitat, which were grown in low light (relative photon flux density: R-PPFD of 5%) showed 41% less light-saturated photosynthetic rate, 50% less dark respiration rate and earlier defoliation than the ramets in high light (R-PPFD of 61%). The estimation of daily photosynthesis revealed that the light acclimation response in leaf gas exchange contributes to efficient carbon gain of whole plants, irrespective of experimental light conditions. Water stress increased root weight ratio, decreased ramet leaf area, petiole length and photosynthetic capacity. These morphological effects of water stress were larger in high and medium light regimes than in low light regime. The consequence of the above responses was recognized in the relative growth rate of the ramets. The relative growth rate of the ramets in high light with wet regime was four-fold of that in low light plus wet regime, and was 1.5-fold of that in high light plus dry regime. However, even in low light and/or dry regimes, ramets kept positive relative growth rates and produced gemma successfully. We could not detect significant variation in growth responses among genets. The high photosynthetic plasticity revealed in the present study should enable Primula sieboldii to inhabit in a broad range of light and soil water availability.  相似文献   
100.
Two small genes named sscA (previously yhzE) and orf-62, located in the prsA-yhaK intergenic region of the Bacillus subtilis genome, were transcribed by SigK and GerE in the mother cells during the later stages of sporulation. The SscA-FLAG fusion protein was produced from T(5) of sporulation and incorporated into mature spores. sscA mutant spores exhibited poor germination, and Tricine-SDS-PAGE analysis showed that the coat protein profile of the mutant differed from that of the wild type. Bands corresponding to proteins at 59, 36, 5, and 3 kDa were reduced in the sscA null mutant. Western blot analysis of anti-CotB and anti-CotG antibodies showed reductions of the proteins at 59 kDa and 36 kDa in the sscA mutant spores. These proteins correspond to CotB and CotG. By immunoblot analysis of an anti-CotH antibody, we also observed that CotH was markedly reduced in the sscA mutant spores. It appears that SscA is a novel spore protein involved in the assembly of several components of the spore coat, including CotB, CotG, and CotH, and is associated with spore germination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号