首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7244篇
  免费   414篇
  国内免费   3篇
  7661篇
  2023年   19篇
  2022年   62篇
  2021年   104篇
  2020年   53篇
  2019年   85篇
  2018年   96篇
  2017年   107篇
  2016年   139篇
  2015年   252篇
  2014年   290篇
  2013年   486篇
  2012年   469篇
  2011年   470篇
  2010年   342篇
  2009年   300篇
  2008年   504篇
  2007年   484篇
  2006年   503篇
  2005年   475篇
  2004年   471篇
  2003年   459篇
  2002年   452篇
  2001年   55篇
  2000年   46篇
  1999年   92篇
  1998年   100篇
  1997年   77篇
  1996年   72篇
  1995年   59篇
  1994年   71篇
  1993年   62篇
  1992年   43篇
  1991年   39篇
  1990年   19篇
  1989年   21篇
  1988年   33篇
  1987年   20篇
  1986年   21篇
  1985年   18篇
  1984年   28篇
  1983年   12篇
  1982年   28篇
  1981年   25篇
  1980年   14篇
  1979年   20篇
  1978年   7篇
  1977年   14篇
  1976年   7篇
  1975年   6篇
  1970年   5篇
排序方式: 共有7661条查询结果,搜索用时 15 毫秒
81.
82.
Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to bind microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function.  相似文献   
83.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   
84.
SGIP1 has been shown to be an endophilin-interacting protein that regulates energy balance, but its function is not fully understood. Here, we identified its splicing variant of SGIP1 and named it SGIP1alpha. SGIP1alpha bound to phosphatidylserine and phosphoinositides and deformed the plasma membrane and liposomes into narrow tubules, suggesting the involvement in vesicle formation during endocytosis. SGIP1alpha furthermore bound to Eps15, an important adaptor protein of clathrin-mediated endocytic machinery. SGIP1alpha was colocalized with Eps15 and the AP-2 complex. Upon epidermal growth factor (EGF) stimulation, SGIP1alpha was colocalized with EGF at the plasma membrane, indicating the localization of SGIP1alpha at clathrin-coated pits/vesicles. SGIP1alpha overexpression reduced transferrin and EGF endocytosis. SGIP1alpha knockdown reduced transferrin endocytosis but not EGF endocytosis; this difference may be due to the presence of redundant pathways in EGF endocytosis. These results suggest that SGIP1alpha plays an essential role in clathrin-mediated endocytosis by interacting with phospholipids and Eps15.  相似文献   
85.
Summary Monoclonal antibodies (mAbs) were raised by injection of a homogenate of cultured growth cartilage (GC) cells from young rabbit ribs. These mAbs were examined by immunohistochemical staining for their reactivity to paraffin sections of rabbit tissues. The results showed that an mAb reacted preferentially with late hypertrophic and calcified costal GC zones. The mAb also reacted with hypertrophic GC adjacent to bone that existed in sternum and femur, but not to other cartilages, including resting cartilage, articular cartilage, auricular cartilage, nasal cartilage, tracheal cartilage and meniscus cartilage, or with other tissues, including tendon, skin, muscles, lung, liver, heart, thymus, spleen, eye and gut. It reacted with a wider area of the GC zone when the sections were decalcified, although its reactivity with the extended area was much less intensive than that with late hypertrophic and calcified GC zones. On treatment of the sections with bacterial collagenase, neither the reactive area nor its intensity were changed, while when treated with trypsin the reactivity was lost.These results suggest the existence of a certain molecule which distinguishes GC (osteogenic cartilage) from other (non-osteogenic) cartilage. This mAb is a useful probe for distinguishing osteogenic cartilage from non-osteogenic cartilage, and for studying differentiation steps of cartilage cells in endochondral bone formation. The mAb can also be used as a probe for clinical and stored specimens because it reacts with decalcified and paraffin-embedded human specimens.  相似文献   
86.
87.
l-aspartate dehydrogenase (EC 1.4.1.21; l-AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative l-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for l-aspartate (l-Asp) and oxaloacetate (OAA) of 127 and 147 U mg−1, respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T m value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K m values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The l-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of l-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of l-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of l-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.  相似文献   
88.
The mechanism of toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is thought to result from changes in gene expression via the aryl hydrocarbon receptor (AHR). The induction of cytochrome P450 1A (CYP1A) in various organs is a cardinal effect of TCDD. However, whether CYP1A is involved in endpoints of TCDD toxicity is controversial. We investigated the role of CYP1A in TCDD-induced developmental toxicities using gene knock-down with morpholino antisense oligos. Exposure of zebrafish embryos to TCDD, at concentrations eliciting the hallmark endpoints of developmental toxicity, induced CYP1A in the heart and vascular endothelium throughout the body. This induction by TCDD was markedly inhibited by morpholinos to zebrafish arylhydrocarbon receptor 2 (zfAHR2-MO) and to zebrafish CYP1A (zfCYP1A-MO). The zfAHR2-MO but not the zfCYP1A-MO inhibited zfCYP1A mRNA expression, indicating the specificities of these morpholinos. Injection of either zfAHR2-MO or zfCYP1A-MO blocked the representative signs of TCDD developmental toxicity in zebrafish, pericardial edema and trunk circulation failure. The morpholinos appeared do not affect normal development in TCDD-untreated embryos. These results suggest a mediatory role of zfCYP1A induction through zfAHR2 activation in causing circulation failure by TCDD in zebrafish. This is the first molecular evidence demonstrating an essential requirement for CYP1A induction in TCDD-evoked developmental toxicities in any vertebrate species.  相似文献   
89.
EGFR is involved in the density-dependent inhibition of cell growth, while coexpression of EGFR with erbB2 can render normal cells transformed. In this study, we have examined the effect of a species of p185 that contains the transmembrane domain and the extracellular domain of p185(c-neu), on growth properties of a human malignant mesothelioma cell line that coexpresses EGFR and erbB2. The ectodomain form of p185(c-neu) enhanced density-dependent inhibition of cell growth and we found that p21 induction appeared to be responsible for this inhibitory effect. Previously, the extracellular domain species was shown to suppress the transforming abilities of EGFR and p185(c-neu/erbB2) in a dominant-negative manner. The ability of this subdomain to affect tumor growth is significant, as it reduced in vivo tumor growth. Unexpectedly, we found that the domain did not abrogate all of EGFR functions. We noted that EGFR-induced density-dependent inhibition of cell growth was retained. Tyrosine kinase inhibitors of EGFR did not cause density-dependent inhibition of cell growth of malignant mesothelioma cells. Therefore, simultaneously inhibiting the malignant phenotype and inducing density-dependent inhibition of cell growth in malignant mesothelioma cells by the extracellular domain of p185(c-neu) may represent an important therapeutic advance.  相似文献   
90.
The progression of obesity is accompanied by a chronic inflammatory process that involves both innate and acquired immunity. Natural killer T (NKT) cells recognize lipid antigens and are also distributed in adipose tissue. To examine the involvement of NKT cells in the development of obesity, C57BL/6 mice (wild type; WT), and two NKT-cell-deficient strains, Jα18(-/-) mice that lack the type I subset and CD1d(-/-) mice that lack both the type I and II subsets, were fed a high fat diet (HFD). CD1d(-/-) mice gained the least body weight with the least weight in perigonadal and brown adipose tissue as well as in the liver, compared to WT or Jα18(-/-) mice fed an HFD. Histologically, CD1d(-/-) mice had significantly smaller adipocytes and developed significantly milder hepatosteatosis than WT or Jα18(-/-) mice. The number of NK1.1(+)TCRβ(+) cells in adipose tissue increased when WT mice were fed an HFD and were mostly invariant Vα14Jα18-negative. CD11b(+) macrophages (Mφ) were another major subset of cells in adipose tissue infiltrates, and they were divided into F4/80(high) and F4/80(low) cells. The F4/80(low)-Mφ subset in adipose tissue was increased in CD1d(-/-) mice, and this population likely played an anti-inflammatory role. Glucose intolerance and insulin resistance in CD1d(-/-) mice were not aggravated as in WT or Jα18(-/-) mice fed an HFD, likely due to a lower grade of inflammation and adiposity. Collectively, our findings provide evidence that type II NKT cells initiate inflammation in the liver and adipose tissue and exacerbate the course of obesity that leads to insulin resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号