首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9707篇
  免费   587篇
  国内免费   4篇
  10298篇
  2023年   21篇
  2022年   82篇
  2021年   123篇
  2020年   68篇
  2019年   100篇
  2018年   115篇
  2017年   130篇
  2016年   171篇
  2015年   303篇
  2014年   347篇
  2013年   617篇
  2012年   578篇
  2011年   563篇
  2010年   424篇
  2009年   357篇
  2008年   591篇
  2007年   583篇
  2006年   609篇
  2005年   562篇
  2004年   580篇
  2003年   578篇
  2002年   569篇
  2001年   176篇
  2000年   155篇
  1999年   184篇
  1998年   144篇
  1997年   106篇
  1996年   95篇
  1995年   84篇
  1994年   100篇
  1993年   80篇
  1992年   101篇
  1991年   111篇
  1990年   81篇
  1989年   87篇
  1988年   69篇
  1987年   71篇
  1986年   58篇
  1985年   54篇
  1984年   54篇
  1983年   26篇
  1982年   51篇
  1981年   41篇
  1980年   32篇
  1979年   39篇
  1978年   22篇
  1977年   28篇
  1976年   24篇
  1973年   21篇
  1968年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
alpha 2-HS-glycoprotein (AHSG) phenotyping was done in 655 Japanese from the Goto Islands, western Japan, using isoelectric focusing followed by immunoblotting. Four new AHSG alleles were encountered, AHSG*G1-G4, whose genetic transmissions were established in family studies. The allele frequencies were: AHSG*1 = 0.7221; AHSG*2 = 0.2748, and AHSG*G1-G4 = 0.0008, respectively.  相似文献   
22.
M Hara  M Yoshida  H Nakano 《Biochemistry》1990,29(46):10449-10455
Kapurimycin A3 is a new antitumor antibiotic isolated from a Streptomyces. It contains the anthrapyrone skeleton and a beta,gamma-unsaturated delta-keto carboxylic acid moiety in the structure. In vitro, kapurimycin causes single-strand cleavage of supercoiled pBR322 DNA. The diminished cytotoxicity and DNA cleaving activity for 13-decarboxykapurimycin A3 indicates that the beta, gamma-unsaturated delta-keto carboxylic acid moiety is important for the activity of kapurimycin. Kapurimycin A3 binds to calf thymus DNA at 4 degrees C, and the thermal treatment of this adduct results in release of a guanine covalently attached to C-16 of kapurimycin via one of its nitrogen atoms. Thus, the epoxide is the alkylating functional group of kapurimycin, and this is consistent with the lack of DNA cleaving and cytotoxic activities for 14,16-deoxy-14,16-dihydroxykapurimycin. These findings have revealed that DNA strand scission by kapurimycin is due to the alkylation of guanine by ring opening of the epoxide group of kapurimycin, depurination of modified guanine, and presumably subsequent hydrolysis of the phosphate ester backbone at the resultant apurinic sites.  相似文献   
23.
A gas chromatographic method was developed for the determination of monoacetylputrescine, monoacetylcadaverine, N1-acetylspermidine and N5-acetylspermidine in human urine. The amines were isolated from urine by silica gel column chromatography. 1, 10-Diaminodecane was used as internal standard. The amines were reacted with ethyl chloroformate in aqueous medium to four ethyloxycarbonyl derivatives prior to application to gas chromatography using a flame ionization detector. Separation and determination of the derivatives were carried out on a Uniport HP column (1.0 m) impregnated with 0.5% SP-1000 under temperature-programmed conditions. The monoacetylpolyamines could be measured accurately at the nanomole level. The method was used for the determination of the monoacetylpolyamines in urine of healthy volunteers. The values obtained were in the range of the published data.  相似文献   
24.
Abstract: Skeletal muscle cells of newborn rats, cultured in the absence of neuronal influence, were found to contain two types of cell surface acetylcholine receptors as demonstrated by isoelectric focusing. The isoelectric points of the two types of receptors were indistinguishable from those of junctional and extrajunctional types of receptors in mature animals. The cultured cells had two classes of intracellular α-bungarotoxin (αBT) binding components; one had the same sedimentation coefficient as that of surface receptors (9S), and the other had much smaller apparent molecular weights. Only a single major component was detected by isoelectric focusing analysis of the 9s intracellular aBT binding component, with a PI value close to that of the extra junctional receptor. These results suggest that the junctional and extrajunctional types of receptors may be synthesized through a common precursor.  相似文献   
25.
From leaves and twigs of Ixora chinensis, two new iridoid glucosides, ixoroside (1) and ixoside (7,8-dehydroforsythide) (2) along with known geniposidic acid (3) have been isolated and their structures have been established.  相似文献   
26.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   
27.
28.
Endopolygalacturonases (EC 3.2.1.15) catalyze random hydrolysis of the alpha-1,4 glycosidic linkages in polygalacturonic acid, a component of pectin. Previously, we reported crystal structures of endogenously produced Stereum purprureum endopolygalacturonase I (endoPG I), both in its native form and complexed with its product, galacturonate. However, the substrate-binding mechanism of endoPG I is still unclear, because crystals have not yet been obtained with a substrate analog, or with mutant enzymes that can bind substrates. We describe here an expression system using Escherichia coli and a purification method to prepare functionally active endoPG I for such mutation and crystallographic studies. Expression in E. coli strain Origami (DE3) provided a soluble and active enzyme with proper disulfide bond formation, whereas the enzyme expressed in BL21 (DE3) was localized in inclusion bodies. A sufficient amount of recombinant endoPG I produced by Origami (DE3) was purified by a single-step procedure using cation exchange chromatography. The specific activity of recombinant endoPG I was equivalent to that of the enzyme produced by S. purpureum. Recombinant endoPG I was crystallized under the same conditions as those used for the native enzyme produced by S. purpureum. The crystals diffracted beyond 1.0 A resolution with synchrotron radiation.  相似文献   
29.
30.
MicroRNAs (miRNAs) are versatile regulators of gene expression and undergo complex maturation processes. However, the mechanism(s) stabilizing or reducing these small RNAs remains poorly understood. Here we identify mammalian immune regulator MCPIP1 (Zc3h12a) ribonuclease as a broad suppressor of miRNA activity and biogenesis, which counteracts Dicer, a central ribonuclease in miRNA processing. MCPIP1 suppresses miRNA biosynthesis via cleavage of the terminal loops of precursor miRNAs (pre-miRNAs). MCPIP1 also carries a vertebrate-specific oligomerization domain important for pre-miRNA recognition, indicating its recent evolution. Furthermore, we observed potential antagonism between MCPIP1 and Dicer function in human cancer and found a regulatory role of MCPIP1 in the signaling axis comprising miR-155 and its target c-Maf. These results collectively suggest that the balance between processing and destroying ribonucleases modulates miRNA biogenesis and potentially affects pathological miRNA dysregulation. The presence of this abortive processing machinery and diversity of MCPIP1-related genes may imply a dynamic evolutional transition of the RNA silencing system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号