首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8055篇
  免费   463篇
  国内免费   3篇
  8521篇
  2023年   20篇
  2022年   66篇
  2021年   110篇
  2020年   54篇
  2019年   90篇
  2018年   109篇
  2017年   111篇
  2016年   150篇
  2015年   274篇
  2014年   314篇
  2013年   545篇
  2012年   502篇
  2011年   492篇
  2010年   368篇
  2009年   321篇
  2008年   544篇
  2007年   524篇
  2006年   557篇
  2005年   522篇
  2004年   515篇
  2003年   498篇
  2002年   491篇
  2001年   86篇
  2000年   89篇
  1999年   115篇
  1998年   117篇
  1997年   83篇
  1996年   76篇
  1995年   66篇
  1994年   75篇
  1993年   71篇
  1992年   67篇
  1991年   56篇
  1990年   33篇
  1989年   35篇
  1988年   38篇
  1987年   25篇
  1986年   34篇
  1985年   23篇
  1984年   33篇
  1983年   19篇
  1982年   32篇
  1981年   27篇
  1980年   17篇
  1979年   27篇
  1978年   11篇
  1977年   16篇
  1976年   9篇
  1975年   12篇
  1973年   12篇
排序方式: 共有8521条查询结果,搜索用时 0 毫秒
871.
The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone.  相似文献   
872.
Triterpenoids are a diverse group of secondary metabolites that are associated with a variety of biological activities. Oleanolic acid, ursolic acid and betulinic acid are common triterpenoids in plants with diverse biological activities, including antifungal, antibacterial, anti-human immunodeficiency virus (HIV) and/or antitumor activities. In the present study, using the gene co-expression analysis tool of Medicago truncatula, we found a strong correlation between CYP716A12 and β-amyrin synthase (bAS), which encodes the enzyme responsible for the initial cyclization of 2,3-oxidosqualene to β-amyrin (the basic structural backbone of most triterpenoid saponins). Through an in vitro assay, we identified CYP716A12 as a β-amyrin 28-oxidase able to modify β-amyrin to oleanolic acid (through erythrodiol and, possibly, oleanolic aldehyde). We also confirmed its activity in vivo, by expressing CYP716A12 in transgenic yeast that endogenously produce β-amyrin. In addition, CYP716A12 was evaluated for its potential α-amyrin- and lupeol-oxidizing activities. Interestingly, CYP716A12 was able to generate ursolic acid (through uvaol and, possibly, ursolic aldehyde) and betulinic acid (through betulin). Hence, CYP716A12 was characterized as a multifunctional enzyme with β-amyrin 28-oxidase, α-amyrin 28-oxidase and lupeol 28-oxidase activities. We also identified homologs of CYP716A12 in grape (CYP716A15 and CYP716A17) that are involved in triterpenoid biosynthesis, which indicates the highly conserved functionality of the CYP716A subfamily among plants. These findings will be useful in the heterologous production of pharmacologically and industrially important triterpenoids, including oleanolic acid, ursolic acid and betulinic acid.  相似文献   
873.
Schizosaccharomyces pombe carboxypeptidase Y (CPY) is synthesized as a zymogen and transported into the vacuole where maturation and activation occurs. The 110-kDa S. pombe CPY precursor is processed twice and finally converted to a mature form consisting of polypeptides of approximately 19 and 32 kDa linked by a single disulfide bond. In Saccharomyces cerevisiae, maturation of CPY occurs mostly through the activity of vacuolar aspartyl protease Pep4p, whereas a Pep4p homolog has not been found in the S. pombe genome database. Based on analysis of protease-deficient mutants, we found that S. pombe CPY was not able to be processed or activated in isp6Δpsp3Δ double disruptants. Both Isp6p and Psp3p are subtilase-type serine proteases with related sequences. Moreover, alkaline phosphatase of S. pombe was found to be localized at the vacuolar membrane and was also unprocessed in isp6Δpsp3Δ double disruptants. Vacuolar localization of GFP-fused Isp6p and Psp3p was determined by fluorescence microscopy. These results suggest that the two serine proteases Isp6p and Psp3p are functional in the vacuole and are involved in proteolytic processing of vacuolar proteins.  相似文献   
874.
The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.  相似文献   
875.
Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/mt)) that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12(mt/mt) embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16. In contrast, Trip12(mt/mt) ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12(mt/mt) ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex) and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.  相似文献   
876.
Chemical arrays were employed to screen ligands for HtpG, the prokaryotic homologue of Hsp (heat-shock protein) 90. We found that colistins and the closely related polymyxin B interact physically with HtpG. They bind to the N-terminal domain of HtpG specifically without affecting its ATPase activity. The interaction caused inhibition of chaperone function of HtpG that suppresses thermal aggregation of substrate proteins. Further studies were performed with one of these cyclic lipopeptide antibiotics, colistin sulfate salt. It inhibited the chaperone function of the N-terminal domain of HtpG. However, it inhibited neither the chaperone function of the middle domain of HtpG nor that of other molecular chaperones such as DnaK, the prokaryotic homologue of Hsp70, and small Hsp. The addition of colistin sulfate salt increased surface hydrophobicity of the N-terminal domain of HtpG and induced oligomerization of HtpG and its N-terminal domain. These structural changes are discussed in relation to the inhibition of the chaperone function.  相似文献   
877.
The occurrence of mycotoxins in small grain cereals and their retention in final products are serious concerns for food safety. Previously, we investigated the fate of deoxynivalenol and nivalenol in a Japanese soft red winter wheat cultivar during milling and we found that deoxynivalenol and/or nivalenol was readily distributed among flours for human consumption. In the present study, we analyzed the ergosterol concentrations in the milling fractions as an index of fungal biomass to elucidate the relationship between deoxynivalenol/nivalenol accumulation and fungal invasion into the grain, after the in-house validation of an analytical method for quantifying ergosterol in the resulting milling fractions (patent flour, low-grade flour, bran, and shorts). Using three samples with different levels of deoxynivalenol and/or nivalenol contamination, the contents of deoxynivalenol/nivalenol and ergosterol in the resulting milling fractions were evaluated. The concentration of ergosterol was always lowest in patent flour and highest in bran or shorts, indicating that most of the fungi is retained in the outer layers of grain (bran and shorts) even in highly contaminated grain. On the other hand, the concentrations of deoxynivalenol and nivalenol were similar in the low-grade and patent flours and only slightly lower than in the medium-level and high-level contaminated grains. Moreover, the percentage distribution of ergosterol was higher in bran than in other fractions in all cases, which differed from that of deoxynivalenol/nivalenol. This result indicates the diffusion of deoxynivalenol/nivalenol inside the grain that is independent of fungal invasion.  相似文献   
878.
879.
In angiosperms, chlorophyll biosynthesis is light dependent. A key factor in this process is protochlorophyllide oxidoreductase (POR), which requires light to catalyze the reduction of protochlorophyllide to chlorophyllide. It is believed that this protein originated from an ancient cyanobacterial enzyme that was introduced into proto‐plant cells during the primary symbiosis. Here we report that PORs from the cyanobacteria Gloeobacter violaceus PCC7421 and Synechocystis sp. PCC6803 function in plastids. First, we found that the G. violaceus POR shows a higher affinity to its substrate protochlorophyllide than the Synechocystis POR but a similar affinity to plant PORs. Secondly, the reduced size of prolamellar bodies caused by a knockdown mutation of one of the POR genes, PORA, in Arabidopsis could be complemented by heterologous expression of the cyanobacterial PORs. Photoactive protochlorophyllide in the etioplasts of the complementing lines, however, was retained at a low level as in the parent PORA knockdown mutant, indicating that the observed formation of prolamellar bodies was irrelevant to the assembly of photoactive protochlorophyllide. This work reveals a new view on the formation of prolamellar bodies and provides new clues about the function of POR in the etioplast–chloroplast transition.  相似文献   
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号