首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8215篇
  免费   460篇
  国内免费   3篇
  8678篇
  2023年   21篇
  2022年   68篇
  2021年   112篇
  2020年   59篇
  2019年   90篇
  2018年   103篇
  2017年   119篇
  2016年   151篇
  2015年   277篇
  2014年   310篇
  2013年   519篇
  2012年   514篇
  2011年   513篇
  2010年   372篇
  2009年   323篇
  2008年   550篇
  2007年   521篇
  2006年   553篇
  2005年   518篇
  2004年   522篇
  2003年   515篇
  2002年   520篇
  2001年   105篇
  2000年   91篇
  1999年   142篇
  1998年   115篇
  1997年   87篇
  1996年   80篇
  1995年   68篇
  1994年   79篇
  1993年   72篇
  1992年   62篇
  1991年   59篇
  1990年   33篇
  1989年   33篇
  1988年   49篇
  1987年   33篇
  1986年   37篇
  1985年   29篇
  1984年   32篇
  1983年   19篇
  1982年   33篇
  1981年   31篇
  1980年   17篇
  1979年   25篇
  1978年   12篇
  1977年   18篇
  1976年   12篇
  1975年   10篇
  1973年   9篇
排序方式: 共有8678条查询结果,搜索用时 15 毫秒
81.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   
82.
DNA methylation is a well-characterized epigenetic modification involved in gene regulation and transposon silencing in mammals. It mainly occurs on cytosines at CpG sites but methylation at non-CpG sites is frequently observed in embryonic stem cells, induced pluriotent stem cells, oocytes and the brain. The biological significance of non-CpG methylation is unknown. Here, we show that non-CpG methylation is also present in male germ cells, within and around B1 retrotransposon sequences interspersed in the mouse genome. It accumulates in mitotically arrested fetal prospermatogonia and reaches the highest level by birth in a Dnmt3l-dependent manner. The preferential site of non-CpG methylation is CpA, especially CpApG and CpApC. Although CpApG (and CpTpG) sites contain cytosines at symmetrical positions, hairpin-bisulfite sequencing reveals that they are hemimethylated, suggesting the absence of a template-dependent copying mechanism. Indeed, the level of non-CpG methylation decreases after the resumption of mitosis in the neonatal period, whereas that of CpG methylation does not. The cells eventually lose non-CpG methylation by the time they become spermatogonia. Our results show that non-CpG methylation accumulates in non-replicating, arrested cells but is not maintained in mitotically dividing cells during male germ-cell development.  相似文献   
83.
84.
85.
86.
Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, and bovine podoplanin (PDPN), a lymphatic endothelial cell marker, have been established in our previous studies. However, mAbs against horse PDPN (horPDPN), which are useful for immunohistochemical analysis, remain to be developed. In the present study, mice were immunized with horPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/horPDPN), and hybridomas producing mAbs against horPDPN were screened using flow cytometry. One of the mAbs, PMab-219 (IgG2a, kappa), specifically detected CHO/horPDPN cells via flow cytometry and recognized horPDPN protein using Western blotting. Furthermore, PMab-219 strongly stained CHO/horPDPN via immunohistochemistry. These findings suggest that PMab-219 is useful for investigating the function of horPDPN.  相似文献   
87.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   
88.
The tripeptide formyl–Met–Leu–Phe (fMLF) is a prototype of N-formylated chemotactic peptides for neutrophils owing to its ability to bind and activate the G protein-coupled formyl peptide receptor (FPR). Here, we developed an 18F-labeled fMLF derivative targeting FPR as a positron emission tomography (PET) imaging probe for bacterial infections. The study demonstrates that the fMLF derivative fMLFXYk(FB)k (X?=?Nle) has a high affinity for FPR (Ki?=?0.62?±?0.13?nM). The radiochemical yield and purity of [18F]fMLFXYk(FB)k were 16% and >96%, respectively. The in vivo biodistribution study showed that [18F]fMLFXYk(FB)k uptake was higher in the bacterial infected region than in the non-infected region. We observed considerably higher infection-to-muscle ratio of 4.6 at 60?min after [18F]fMLFXYk(FB)k injection. Furthermore, small-animal PET imaging studies suggested that [18F]fMLFXYk(FB)k uptake in the bacterial infected region was clearly visualized 60?min after injection.  相似文献   
89.
Summary Ontogenetic development of LHRH-containing neurons was studied by fluorescence and enzyme immunohistochemistry in rats. In in vitro studies, the tissues of the septal-chiasmatic and mediobasal hypothalamic areas of fetal rats on day 16.5 or 18.5 of gestation were trypsinized separately for dissociation of the neural cells, and cultured for several days. Immunopositive reaction against LHRH was first detected in nerve cells derived from both areas of the hypothalamus of the fetuses on days 16.5 and 18.5 of gestation, after 8 and 6 days culture, respectively. The cells were small, and seemed to be bipolar in morphology indicating an axon and arborized dendrites. Immunopositive material occurred in the cell soma as well as in the cellular processes. In in vivo studies, immunopositive material, possibly deposited in nerve fibers, appeared first in OVLT and simultaneously in the external layer of the median eminence of fetuses on day 20.5 of gestation. The immunoreactive fibers increased in number in both parts with development, especially after birth in the median eminence. No immunopositive material was detected within any neural cell bodies nor in the cytoplasm of any ependymal cells.This work was financed by the Ministry of Education, Japan. No. 257008. We would like to thank Dr. Katsuhiko Saito (Department of Surgery, Tokushima University) for his kind advice on the preparation of the antibody used for the immunofluorescence study.  相似文献   
90.
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号