首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10230篇
  免费   577篇
  10807篇
  2022年   57篇
  2021年   108篇
  2020年   61篇
  2019年   83篇
  2018年   116篇
  2017年   110篇
  2016年   188篇
  2015年   276篇
  2014年   299篇
  2013年   594篇
  2012年   487篇
  2011年   512篇
  2010年   300篇
  2009年   319篇
  2008年   484篇
  2007年   476篇
  2006年   425篇
  2005年   473篇
  2004年   438篇
  2003年   435篇
  2002年   430篇
  2001年   366篇
  2000年   382篇
  1999年   281篇
  1998年   131篇
  1997年   102篇
  1996年   70篇
  1995年   81篇
  1994年   78篇
  1993年   90篇
  1992年   206篇
  1991年   203篇
  1990年   206篇
  1989年   195篇
  1988年   177篇
  1987年   146篇
  1986年   119篇
  1985年   117篇
  1984年   110篇
  1983年   89篇
  1982年   77篇
  1981年   67篇
  1979年   88篇
  1978年   64篇
  1977年   66篇
  1976年   58篇
  1975年   60篇
  1974年   59篇
  1973年   57篇
  1972年   64篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
202.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   
203.
We designed two procedures to visualize simultaneously clusters of ribosomal RNA genes (rDNA) and the nucleolus in plant cells. The procedures combine fluorescence in situ hybridization (FISH) to visualize the rDNA clusters and silver staining to observe the nucleolus. When FISH is followed by silver staining, many minute FISH signals are localized in the nucleolus, and several large FISH signals are seen on the nucleolar periphery. When FISH was applied to the specimens with silver nitrate staining, large FISH signals were visualized in the nucleoplasm associated with the nucleolar periphery, but no signals were seen in the nucleoli. Thus, the two combinations of FISH and silver staining provided different details regarding the arrangement of rDNA clusters in the nucleolus of plant cells.  相似文献   
204.
Expression of prolactin gene in incubating hens   总被引:2,自引:0,他引:2  
  相似文献   
205.
The Six1 homeobox gene plays critical roles in vertebrate organogenesis. Mice deficient for Six1 show severe defects in organs such as skeletal muscle, kidney, thymus, sensory organs and ganglia derived from cranial placodes, and mutations in human SIX1 cause branchio-oto-renal syndrome, an autosomal dominant developmental disorder characterized by hearing loss and branchial defects. The present study was designed to identify enhancers responsible for the dynamic expression pattern of Six1 during mouse embryogenesis. The results showed distinct enhancer activities of seven conserved non-coding sequences (CNSs) retained in tetrapod Six1 loci. The activities were detected in all cranial placodes (excluding the lens placode), dorsal root ganglia, somites, nephrogenic cord, notochord and cranial mesoderm. The major Six1-expression domains during development were covered by the sum of activities of these enhancers, together with the previously identified enhancer for the pre-placodal region and foregut endoderm. Thus, the eight CNSs identified in a series of our study represent major evolutionarily conserved enhancers responsible for the expression of Six1 in tetrapods. The results also confirmed that chick electroporation is a robust means to decipher regulatory information stored in vertebrate genomes. Mutational analysis of the most conserved placode-specific enhancer, Six1-21, indicated that the enhancer integrates a variety of inputs from Sox, Pax, Fox, Six, Wnt/Lef1 and basic helix-loop-helix proteins. Positive autoregulation of Six1 is achieved through the regulation of Six protein-binding sites. The identified Six1 enhancers provide valuable tools to understand the mechanism of Six1 regulation and to manipulate gene expression in the developing embryo, particularly in the sensory organs.  相似文献   
206.
207.
The Polar flagella (Pof) of Vibrio alginolyticus are surrounded by a membrane structure called a sheath. Five major proteins, whose molecular masses are 60, 47, 45, 44, and 18 kDa (named PF60, PF47, PF45, PF44, and PF18, respectively), have been detected in polar flagella. PF47 and PF45 have been identified as flagellins while the other proteins are thought to be sheath-associated ones. In this study, we isolated and partially characterized a major sheath protein, PF60. We found that PF60 can be solubilized by Triton X-100 treatment, but not by heat or acid treatment. After digestion with a peptidase, the N-terminal sequences of several fragments were determined and the N-terminus of intact PF60 seemed to be blocked. Through PCR in conjunction with oligonucleotide primers deduced from the peptide sequences, a DNA fragment of PF60 was amplified. A 4.5 kb HindIII restriction fragment was cloned by colony hybridization using the PCR fragment. Subsequent sequence analysis revealed three complete and one partial open reading frame (ORFs). The three ORFs, which exhibit sequence homology, correspond to PF60 (named pfsA), an amino acid transport ATP-binding protein, and an amino acid binding periplasmic protein. The single pfsA gene constitutes an operon and encodes a protein of 491 amino acids containing a putative signal peptide sequence at the N-terminal. A sequence database search revealed no homologous protein. However, PfsA seems to resemble lipoproteins in the N-terminal signal sequence and the biochemical data obtained in this study are consistent with that PfsA is a lipoprotein. The expression of the pfsA gene may be coordinately regulated with flagellar formation and similarly regulated to PF47 flagellin.  相似文献   
208.
209.
Four types of neutral glycosphingolipids (LacCer, Gb3Cer, Gb4Cer, and IV3αGalNAc-Gb4Cer; 10 pmol each) were analyzed using high-performance liquid chromatography (HPLC)-electrospray ionization quadrupole ion trap time-of-flight (ESI-QIT-TOF) mass spectrometry (MS) with a repeated high-speed polarity and MSn switching system. This system can provide six types of mass spectra, including positive and negative ion MS, MS2, and MS3 spectra, within 1 s per cycle. Using HPLC with a normal-phase column, information on the molecular weights of major molecular species of four neutral glycosphingolipids was obtained by detecting [M+Na]+ in the positive ion mode mass spectra and [M?H]? in the negative ion mode mass spectra. Sequences of glycosphingolipid oligosaccharide were obtained in the negative ion MS2 spectra. In addition, information on the ceramide structures was clearly obtained in the negative ion MS3 mass spectra. GlcCer molecular species were analyzed by HPLC-ESI-QIT-TOF MS with a reversed-phase column using 1 pmole of GlcCer. The structures of the seven molecular species of GlcCer, namely, d18:1-C16:0, d18:1-C18:0, d18:1-C20:0, d18:1-C22:0, d18:1-C23:0, d18:1-C24:1, and d18:1-C24:0, were characterized using positive ion MS and negative ion MS, MS2, and MS3. The established HPLC-ESI-QIT-TOF MS with MSn switching and a normal phase column has been successfully applied to the structural characterization of LacCer and Gb4Cer in a crude mixture prepared from human erythrocytes.  相似文献   
210.
Diploneis species have perhaps the most complex valve structure among pennate diatoms. The development of this structure was studied in Diploneis smithii and begins with the formation of a primary band, which then develops secondary arms at both poles and the center, as in the classic Chiappino–Volcani model of raphid diatom ontogeny. Spine‐like projections grow out from the primary band and secondary arms to establish the transapical ribs (virgae) of the mature valve and themselves develop spines, which are spaced first oppositely and then alternately and fuse with each other to delimit the stria pores. Subsequently, new pattern and structures develop both externally (formation of bifurcating projections that fuse to delimit the outer, sieve‐like layer of the valve) and internally (growth and fusion of flanges from the first‐formed ribs to create the longitudinal canals and deposition of a hymenate strip over the internal face of each stria). Comparisons are made with morphogenesis in other diatoms. Diploneis smithii ontogeny suggests how very slight developmental changes might have created the very variable external morphology of Diploneis species. It also indicates that the longitudinal canals of Diploneis and Fallacia have different origins, since the porous external wall is not formed as a unilaterally attached flap in Diploneis and the canal is internal to the first‐formed rib–stria system in Diploneis, but external to it in Fallacia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号