首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   37篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   24篇
  2014年   21篇
  2013年   60篇
  2012年   37篇
  2011年   53篇
  2010年   27篇
  2009年   27篇
  2008年   47篇
  2007年   46篇
  2006年   46篇
  2005年   53篇
  2004年   42篇
  2003年   39篇
  2002年   49篇
  2001年   12篇
  2000年   3篇
  1999年   7篇
  1998年   11篇
  1997年   13篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1928年   1篇
排序方式: 共有738条查询结果,搜索用时 31 毫秒
61.
Nitric oxide (NO) modulates the release of various neurotransmitters, some of these are considered to be involved in neuronal plasticity that includes long-term depression in the cerebellum. To date, there have been no reports on the modulation of the exocytotic release of neurotransmitters in the cerebellar granule cells (CGCs) by NO. The aim of this study was to investigate the effects of NO on the exocytotic release of glutamate from rat CGCs. Treatment with NO-related reagents revealed that NO inhibited high-K(+)-evoked glutamate release. Clostridium botulinum type B neurotoxin (BoNT/B) attenuated the enhancement of glutamate release caused by NO synthase (NOS) inhibition; this indicates that NO acts on the high-K(+)-evoked exocytotic pathway. cGMP-related reagents did not affect the high-K(+)-evoked glutamate release. NO-related reagents did not affect Ca(2+) ionophore-induced glutamate release, suggesting that NO inhibits Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCC). Monitoring of intracellular Ca(2+) revealed that NO inhibited high-K(+)-evoked Ca(2+) entry. L-type VDCC blockers inhibited glutamate release and NO did not have an additive effect on the inhibition produced by the L-type VDCC blocker. The inhibition of the high-K(+)-evoked glutamate release by NO was abolished by a reducing reagent; this suggested that NO regulates the high-K(+)-evoked glutamate release from CGCs by redox modulation.  相似文献   
62.
Degradation of arylarsenic compounds by microorganisms   总被引:2,自引:0,他引:2  
Microorganisms were not directly accumulated when soil contaminated to about 0.5 mM with diphenylarsinic acid (DPAA) was used as the sole source of carbon. However, using toluene as the carbon source yielded several isolates, which were then used in cultivation with DPAA as the sole source of carbon. By these methods, Kytococcus sedentarius strain NK0508, which can grow in up to 0.038 mM DPAA, was isolated. The toxicity of DPAA retarded the growth of K. sedentarius and the direct accumulation of DPAA-utilizing microorganisms from environmental samples. This strain can utilize about 80% of DPAA and phenylarsonic acid as the sole source of carbon for 3 days. Degradation products of DPAA were determined to be cis, cis, muconate and arsenic acid. When K. sedentarius was cultivated with methylphenylarsinic acid and diphenylmethylarsine, about 90% and 10% degradation of the two compounds, respectively, were observed. Diphenylmethylarsine oxide, possibly synthesized by methylation of DPAA, was detected as one of the transformation products. These results suggest that degradation is initiated by splitting of the phenyl groups from the arylarsenic compounds with subsequent hydroxylation of the phenyl groups and ring opening to yield cis, cis, muconate.  相似文献   
63.
64.
Sleep and Biological Rhythms - Sleep duration could affect glucose tolerance and mortality. However, the impact that sleep duration has on prognosis of people with diabetes is unclear. A cohort of...  相似文献   
65.
Animals respond to adverse environments by slowing down or arresting growth and development. Upon returning to normal conditions, they often show compensatory acceleration in growth and developmental rate. This phenomenon, known as `catch-up' growth, is widely documented in the animal kingdom. The underlying molecular mechanisms, however, are poorly understood. Using the zebrafish embryo as an experimental model system, we tested the hypothesis that changes in IGF signaling activities play an important role in the accelerated growth and temporal development resulting from re-oxygenation following hypoxia. We show that chronic hypoxia reduced, and re-oxygenation accelerated, embryonic growth and developmental rate. Whereas hypoxia repressed the Igf1 receptor and its downstream Erk1/2 and Akt signaling activities, re-oxygenation restored their activities. Specific inhibition of Igf1 receptor signaling during re-oxygenation by genetic and pharmacological approaches attenuated catch-up growth. Further analysis showed that whereas PI3K-Akt is required in both normal and catch-up growth, Mek1/2-Erk1/2 activation induced by elevated IGF signaling during re-oxygenation is particularly crucial for catch-up growth. These results suggest that the evolutionarily conserved IGF signaling pathway coordinates growth and temporal development in zebrafish embryos in response to oxygen availability.  相似文献   
66.
Unmethylated CpG dinucleotide (CpG motif) is involved in the exacerbation of DNA-associated autoimmune diseases. We investigated the effect of DNA containing 8-hydroxydeoxyguanosine (oxo-dG), a representative DNA biomarker for oxidative stress in the diseases, on CpG motif-dependent inflammatory responses. ODN1668 and ODN1720 were selected as CpG-DNA and non-CpG DNA, respectively. Deoxyguanosine in the CpG motif (G9) or outside the motif (G15) of ODN1668 was substituted with oxo-dG to obtain oxo(G9)-1668 and oxo(G15)-1668, respectively. Oxo(G15)-1668 induced a significantly higher amount of tumor necrosis factor (TNF)-α from RAW264.7 macrophage-like cells than ODN1668, whereas oxo(G9)-1668, oxo(G8)-1720, or oxo(G15)-1720 hardly did. CpG DNA-induced TNF-α production was significantly increased by addition of oxo(G8)-1720 or oxo(G15)-1720, but not of ODN1720. This oxo-dG-containing DNA-induced increase in TNF-α production was also observed in primary cultured macrophages isolated from wild-type mice, but not observed in those from Toll-like receptor (TLR)-9 knockout mice. In addition, TNF-α production by ligands for TLR3, TLR4, or TLR7 was not affected by oxo-dG-containing DNA. Then, the footpad swelling induced by subcutaneous injection of ODN1668 into mice was increased by coinjection with oxo(G8)-1720, but not with ODN1720. These results indicate that oxo-dG-containing DNA increases the CpG motif-dependent inflammatory responses, which would exacerbate DNA-related autoimmune diseases.  相似文献   
67.
A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.  相似文献   
68.
69.
70.
Satoh H 《Life sciences》2005,78(1):67-73
Effects of Ginkgo biloba extract (GBE) and bilobalide (a main constituent) on the pacemaker activity and the underlying ionic currents in rat sino-atrial (SA) nodal cells were investigated using patch-clamp techniques. Both GBE and bilobalide depressed the pacemaker activity in a concentration-dependent manner. At both 0.03 mg/ml GBE and 0.3 microM bilobalide, a negative chronotropic effect was produced. Dysrhythmias often occurred. The L-type Ca(2+) current (I(Ca)) and the hyperpolarization-activated inward current (I(f)) decreased by 69.7+/-3.2% (n=6, P<0.001) and by 12.6+/-2.1% (n=7, P<0.05) at 0.03 mg/ml GBE, and by 51.2+/-3.3% (n=6, P<0.01) and by 19.8+/-2.2 % (n=6, P<0.05) at 0.3 microM bilobalide, respectively. The delayed rectifier K(+) current (I(K)) also decreased. The inhibition was 12.3+/-2.0% (n=6, P<0.05) at 0.03 mg/ml GBE, and was 28.0+/-2.9% (n=6, P<0.05) at 0.3 microM bilobalide. These results indicate that cardiac ionic channels contributing to the pacemaking are highly sensitive to GBE and bilobalide, which can sufficiently modify the spontaneous activity in rat SA nodal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号