首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   80篇
  935篇
  2022年   7篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   29篇
  2014年   34篇
  2013年   38篇
  2012年   52篇
  2011年   53篇
  2010年   40篇
  2009年   20篇
  2008年   35篇
  2007年   44篇
  2006年   40篇
  2005年   42篇
  2004年   47篇
  2003年   49篇
  2002年   40篇
  2001年   34篇
  2000年   27篇
  1999年   28篇
  1998年   18篇
  1997年   8篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   12篇
  1992年   29篇
  1991年   18篇
  1990年   25篇
  1989年   15篇
  1988年   15篇
  1987年   14篇
  1986年   12篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1966年   3篇
  1964年   1篇
  1956年   1篇
排序方式: 共有935条查询结果,搜索用时 15 毫秒
171.
Pyruvate phosphate dikinase (PPDK, EC 2.7.9.1) from the hyperthermophile Thermotoga maritima was biochemically characterized with the aim of establishing a colorimetric assay for inorganic pyrophosphate (PPi). When heterologously expressed in Escherichia coli, T. maritima PPDK (TmPPDK) was far more stable any other PPDK reported so far: it retained >90% of its activity after incubation for 1 h at 80 °C, and >80% of its activity after incubation for 20 min at pHs ranging from 6.5 to 10.5 (50 °C). In contrast to PPDKs from protozoa and plants, this TmPPDK showed very long-term stability at low temperature: full activity was retained even after storage for at least 2 years at 4 °C. TmPPDK was successfully applied to a novel colorimetric PPi assay, which employed (i) a PPi cycling reaction using TmPPDK and nicotinamide mononucleotide adenylyltransferase (EC 2.7.7.1) from Saccharomyces cerevisiae and (ii) a NAD cycling reaction to accumulate reduced nitroblue tetrazolium (diformazan). This enabled detection of 0.2 μM PPi, making this method applicable for preliminary measurement of PPi levels in PCR products in an automatic clinical analyzer.  相似文献   
172.
173.
OX40 (CD134) and its ligand (OX40L) have been implicated in T cell activation and migration. In this study, we examined the contribution of these molecules to the pathogenesis of experimental autoimmune encephalomyelitis (EAE) by administering a neutralizing mAb against murine OX40L (RM134L) to proteolipid protein (139-151) peptide-induced EAE in SJL mice. Administration of RM134L effectively ameliorated the disease in both actively induced and adoptively transferred EAE models. Histological examination showed that the RM134L treatment greatly reduced mononuclear cell infiltration into the spinal cord. The RM134L treatment did not inhibit the development of pathogenic T cells, given that proliferative response and IFN-gamma production by draining lymph node cells were not reduced or rather enhanced upon restimulation with proteolipid protein (139-151) in vitro, and these cells effectively transferred EAE to naive SJL mice. Flow cytometric analyses showed that the RM134L treatment inhibited the accumulation of OX40-expressing CD4(+) T cells and the migration of adoptively transferred CD4(+) T cells in the spinal cord. Immunohistochemical staining showed that OX40L was most prominently expressed on endothelial cells in the inflamed spinal cord. These results suggest that the OX40/OX40L interaction plays a critical role for the migration of pathogenic T cells into the CNS in the pathogenesis of EAE.  相似文献   
174.
Allethrin-(E)-Ol (IV), allethrin-(E)-al (V) and allethrin-(E)-acid (VI), the metabolites of allethrin (III) in the insect body, were synthesized. Their low toxicities to houseflies seem to support the hypothesis that they are products of the detoxication process of allethrin.  相似文献   
175.
Peroxisomal membrane protein 22, PMP22, is an integral membrane protein that has four putative transmembrane-spanning regions. First reported as a major component of rat liver peroxisomal membranes and suggested to be involved in the metabolism of reactive oxygen species, its function and structure are still unknown owing to a lack of biochemical and structural experiments. Here we report the overproduction and purification of rat PMP22 (rPMP22) with the use of a methylotrophic yeast, Pichia pastoris, as a host. rPMP22 was localized not to peroxisomal membranes but to membrane compartments, such as the nuclear envelope. Highly pure rPMP22 was obtained in two steps. Several physicochemical assays indicated that the purified preparation should retain its functional structure. Furthermore, fed-batch fermentation yielded 90 mg of rPMP22 protein from 4L of culture. This is the first report to demonstrate the overproduction of a recombinant rPMP22 in the membrane compartments of P. pastoris.  相似文献   
176.
Five strains of thermotolerant methylotrophic yeasts isolated in Thailand were found to represent three new species in the genera Pichia and Candida, based on phylogenetic analysis of D1/D2 domain of 26S rDNA, in addition to the morphological, physiological, biochemical and chemotaxonomic characterization. Three strains, FS96 and FS101 from flowers and M02 from tree flux, were characterized by ubiquinone Q7, multilateral budding, and the formation of hat-shaped ascospores that are liberated at maturation. These strains showed identical nucleotide sequences in the D1/D2 domain and formed a cluster with Candida thermophila, "Pichia salicis" and Pichia angusta. They differed by 1.9% of nucleotide substitutions from Candida thermophila, the nearest species. They were considered to represent a single new species and are described as Pichia siamensis sp. nov. Two strains, N051 and S023, isolated from soil did not produce ascospores, proliferated by multilateral budding, did not demonstrate urease or DBB color reaction, and lacked sexual stages. These characteristics correspond to the genus Candida. Strains N051 and S023 differed by 2.8% and 1.9% of nucleotide substitutions in the D1/D2 domain from the nearest species, Candida nemodendra and Candida ovalis, respectively, and are considered to represent respective new species. N051 and S023 are described as Candida krabiensis sp. nov. and Candida sithepensis sp. nov., respectively.  相似文献   
177.
Methylotrophic yeasts, which can utilize methanol as sole carbon and energy source, are exposed to two toxic metabolic intermediates, formaldehyde and hydrogen peroxide, during growth on methanol. Here we report that Msn5p, an importin-β family nuclear exporter, participated in the formaldehyde resistance mechanism but not in the hydrogen peroxide resistance mechanism in Candida boidinii. Disruption of the MSN5 gene in this yeast caused retardation of growth on formaldehyde-generating growth substrates such as methanol and methylamine, but the expression levels of the methanol-metabolizing enzymes did not fall. The Msn5p-depleted strain was sensitive to formaldehyde but not to hydrogen peroxide. Furthermore, a yellow fluorescent protein-tagged Msn5p was diffuse in the cytoplasm of C. boidinii when the cells were treated with high concentrations of formaldehyde or ethanol, but was predominantly associated with the nuclei following treatment with hydrogen peroxide.  相似文献   
178.
179.
Pure phloem sap was collected from leaf sheaths of Zea maysL. by the insect laser technique, and its chemical compositionwas analyzed. Sucrose was the only sugar detected. The predominantinorganic ions were K+ and Cl. The adenylate energy chargeof phloem sap was between 0.72 and 0.86. (Received October 18, 1989; Accepted May 11, 1990)  相似文献   
180.
Doublecortin (DCX) is expressed in young neurons and functions as a microtubule‐associated protein. DCX is essential for neuronal migration because humans with mutations in the DCX gene exhibit cortical lamination defects known as lissencephaly in males and subcortical laminar heterotopia (or double cortex syndrome) in females. Phosphorylation of DCX alters its affinity for tubulin and may modulate neurite extension and neuronal migra tion. Previous in vitro phosphorylation experiments revealed that cyclin‐dependent kinase 5 (Cdk5) phosphorylates multiple sites of DCX, including Ser332, (S332). However, phosphorylation at only Ser297 has been shown in vivo. In the present study, we examined phosphorylation of S332 of DCX in the Cdk5?/? mouse brain and results found, unexpectedly, indicate an increased DCX phosphorylation at S332. We found that JNK, not Cdk5, phosphorylates DCX at S332 in vivo. To examine the physiological significance of S332 phosphorylation of DCX in neuronal cells, we transfected cells with either GFP, GFP‐DCX‐WT, or GFP‐DCX‐S332A and analyzed neurite extension and migration. Introduction of GFP‐DCX‐WT enhanced neurite extension and migration. These effects of DCX introduction were suppressed when we used GFP‐DCX‐S332A. Treatment of neurons with JNK inhibitor increased the amount of DCX that bound to tubulin. Interestingly, amount of DCX that bound to tubulin decreased in Cdk5?/? brain homogenates, which indicates that phosphorylation of DCX by JNK is critical for the regulation of DCX binding to tubulin. These results suggest the physiological importance of phosphorylation of DCX for its function. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 929–942, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号