首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   80篇
  2022年   7篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   11篇
  2015年   29篇
  2014年   34篇
  2013年   38篇
  2012年   52篇
  2011年   53篇
  2010年   40篇
  2009年   20篇
  2008年   35篇
  2007年   44篇
  2006年   40篇
  2005年   42篇
  2004年   47篇
  2003年   49篇
  2002年   40篇
  2001年   34篇
  2000年   27篇
  1999年   28篇
  1998年   18篇
  1997年   8篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   12篇
  1992年   29篇
  1991年   18篇
  1990年   25篇
  1989年   15篇
  1988年   15篇
  1987年   14篇
  1986年   12篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1966年   3篇
  1964年   1篇
  1956年   1篇
排序方式: 共有935条查询结果,搜索用时 15 毫秒
131.
132.

Objectives

The role of angiotensin II type 2 (AT2) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue.

Methods

T2DM mice, KK-Ay, were subjected to intraperitoneal injection of C21 and/or a PPARγ antagonist, GW9662 in drinking water for 2 weeks. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[3H] deoxy-D-glucose in white adipose tissue. Morphological changes of adipose tissues as well as adipocyte differentiation and inflammatory response were examined.

Results

Treatment with C21 ameliorated insulin resistance in KK-Ay mice without influencing blood pressure, at least partially through effects on the PPARγ pathway. C21 treatment increased serum adiponectin concentration and decreased TNF-α concentration; however, these effects were attenuated by PPARγ blockade by co-treatment with GW9662. Moreover, we observed that administration of C21 enhanced adipocyte differentiation and PPARγ DNA-binding activity, with a decrease in inflammation in white adipose tissue, whereas these effects of C21 were attenuated by co-treatment with GW9662. We also observed that administration of C21 restored β cell damage in diabetic pancreatic tissue.

Conclusion

The present study demonstrated that direct AT2 receptor stimulation by C21 accompanied with PPARγ activation ameliorated insulin resistance in T2DM mice, at least partially due to improvement of adipocyte dysfunction and protection of pancreatic β cells.  相似文献   
133.
Bone marrow (BM)-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1) is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO) mice. After the induction of ischemia, blood flow and microvessel density in the ischemic hindlimb were significantly lower in the HSF1-KO mice than in the wild-type (WT) mice. The mobilization of BM-derived Sca-1- and c-kit-positive cells in peripheral blood after ischemia was significantly lower in the HSF1-KO mice than in the WT mice. BM stem/progenitor cells from HSF1-KO mice showed a significant decrease in their recruitment to ischemic tissue and in migration, adhesion, and survival when compared with WT mice. Blood flow recovery in the ischemic hindlimb significantly decreased in WT mice receiving BM reconstitution with donor cells from HSF1-KO mice. Conversely, blood flow recovery in the ischemic hindlimb significantly increased in HSF1-KO mice receiving BM reconstitution with donor cells from WT mice. These findings suggest that HSF1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of BM-derived stem/progenitor cells.  相似文献   
134.
135.
Human T-cell leukemia virus type 1 (HTLV-1) encodes an antisense viral gene product termed HTLV-1 basic leucine-zipper factor (HBZ). HBZ forms heterodimers with c-Jun, a member of the AP-1 family, and promotes its proteasomal degradation. Although most proteasomal substrates are targeted for degradation via conjugation of polyubiquitin chains, we show that ubiquitination is not required for HBZ-mediated proteasomal degradation of c-Jun. We demonstrate that HBZ directly interacts with both the 26 S proteasome and c-Jun and facilitates the delivery of c-Jun to the proteasome without ubiquitination. HBZ acts as a tethering factor between the 26 S proteasome and its substrate, thereby bypassing the targeting function of ubiquitination. These findings disclose a novel viral strategy to utilize the cellular proteolytic system for viral propagation.  相似文献   
136.
Escherichia coli cytosolic glycerophosphodiester phosphodiesterase, UgpQ, functions in the absence of other proteins encoded by the ugp operon and requires Mg2+, Mn2+, or Co2+, in contrast to Ca2+-dependent periplasmic glycerophosphodiester phosphodiesterase, GlpQ. UgpQ has broad substrate specificity toward various glycerophosphodiesters, producing sn-glycerol-3-phosphate and the corresponding alcohols. UgpQ accumulates under conditions of phosphate starvation, suggesting that it allows the utilization of glycerophosphodiesters as a source of phosphate. These results clarify how E. coli utilizes glycerophosphodiesters using two homologous enzymes, UgpQ and GlpQ.  相似文献   
137.
Abstract Adult stem cells have been reported to exist in various tissues. The isolation of high-quality human stem cells that can be used for regeneration of fatal deseases from accessible resources is an important advance in stem cell research. In the present study, we identified a novel stem cell, which we named tooth germ progenitor cells (TGPCs), from discarded third molar, commonly called as wisdom teeth. We demonstrated the characterization and distinctiveness of the TGPCs, and found that TGPCs showed high proliferation activity and capability to differentiate in vitro into cells of three germ layers including osteoblasts, neural cells, and hepatocytes. TGPCs were examined by the transplantation into a carbon tetrachloride (CCl4)-treated liver injured rat to determine whether this novel cell source might be useful for cell-based therapy to treat liver diseases. The successful engraftment of the TGPCs was demonstrated by PKH26 fluorescence in the recipient's rat as to liver at 4 weeks after transplantation. The TGPCs prevented the progression of liver fibrosis in the liver of CCl4-treated rats and contributed to the restoration of liver function, as assessed by the measurement of hepatic serum markers aspartate aminotransferase and alanine aminotransferase. Furthermore, the liver functions, observed by the levels of serum bilirubin and albumin, appeared to be improved following transplantation of TGPCs. These findings suggest that multipotent TGPCs are one of the candidates for cell-based therapy to treat liver diseases and offer unprecedented opportunities for developing therapies in treating tissue repair and regeneration.  相似文献   
138.
Pro-inflammatory death is presumably an undesirable event in cancer prevention process, thus biochemical comprehension and molecular definition of this process could have important clinical implications. In the present study, we examined the cytophysiological conversion of cell death mode by benzyl isothiocyanate (BITC) in human cervical cancer HeLa cells. The detailed studies using flow cytometric and morphological analyses demonstrated that the cells treated with appropriate concentration (25 microM) of BITC showed apoptotic feature, such as chromatin condensation, DNA fragmentation, and preserved plasma membrane integrity, whereas these features were disappeared by treatment with higher concentration (100 microM). The treatment with 2-deoxyglucose, an inhibitor of ATP synthesis, drastically increased in the ratio of necrotic dead cells, while it influences little that of apoptotic cells. Moreover, an analysis using the mitochondrial DNA-deficient HeLa cells demonstrated that the rho degrees cells were more susceptible to the BITC-induced necrosis-like cell death compared to the wild-type (rho(+)) cells, whereas the ROS production was significantly inhibited in the rho degrees cells. It is likely that the BITC-induced ROS is derived from mitochondrial respiratory chain and ruled out the contribution to the mechanism of cell death mode switching. In addition, the BITC treatment resulted in a more rapid depletion of ATP in the rho degrees cells than in the rho(+) cells. Furthermore, a caspase inhibitor, Z-VAD-fmk counteracted not only apoptosis, but also necrosis-like cell death induced by BITC, suggesting that increment in this cell death pattern might be due to the interruption of events downstream of a caspase-dependent pathway. The obtained data suggested that the decline in the intracellular ATP level plays an important role in tuning the mode of cell death by BITC.  相似文献   
139.
140.
During bacterial degradation of methoxylated lignin monomers, such as vanillin and vanillic acid, formaldehyde is released through the reaction catalyzed by vanillic acid demethylase. When Burkholderia cepacia TM1 was grown on vanillin or vanillic acid as the sole carbon source, the enzymes 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) were induced. These enzymes were also expressed during growth on Luria-Bertani medium containing formaldehyde. To understand the roles of these enzymes, the hps and phi genes from a methylotrophic bacterium, Methylomonas aminofaciens 77a, were introduced into B. cepacia TM1. The transformant strain constitutively expressed the genes for HPS and PHI, and these activities were two- or threefold higher than the activities in the wild strain. Incorporation of [14C]formaldehyde into the cell constituents was increased by overexpression of the genes. Furthermore, the degradation of vanillic acid and the growth yield were significantly improved at a high concentration of vanillic acid (60 mM) in the transformant strain. These results suggest that HPS and PHI play significant roles in the detoxification and assimilation of formaldehyde. This is the first report that enhancement of the HPS/PHI pathway could improve the degradation of vanillic acid in nonmethylotrophic bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号