首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1330篇
  免费   96篇
  2021年   9篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   33篇
  2014年   41篇
  2013年   65篇
  2012年   68篇
  2011年   56篇
  2010年   29篇
  2009年   36篇
  2008年   78篇
  2007年   81篇
  2006年   63篇
  2005年   82篇
  2004年   73篇
  2003年   69篇
  2002年   69篇
  2001年   59篇
  2000年   68篇
  1999年   42篇
  1998年   18篇
  1997年   29篇
  1996年   19篇
  1995年   20篇
  1994年   23篇
  1993年   13篇
  1992年   39篇
  1991年   24篇
  1990年   22篇
  1989年   13篇
  1988年   9篇
  1987年   10篇
  1986年   13篇
  1985年   16篇
  1984年   15篇
  1983年   12篇
  1982年   5篇
  1981年   9篇
  1980年   3篇
  1979年   10篇
  1975年   4篇
  1974年   6篇
  1973年   8篇
  1971年   3篇
  1970年   7篇
  1969年   4篇
  1966年   3篇
排序方式: 共有1426条查询结果,搜索用时 375 毫秒
21.
22.
Adsorption of BSA on QAE-dextran: equilibria   总被引:1,自引:0,他引:1  
Equilibrium isotherms for adsorption of bovine serum albumin (BSA) on a strong-base (QAE) dextran-type ion exchanger have been determined experimentally. They were not affected by the initial concentration of BSA but were affected by pH considerably. They were correlated by the Langmuir equation when pH >/= 5.05 and by the Freundlich equation of pH 4.8, which is close to pl approximately 4.8 of BSA. The contribution of ion exchange to adsorption of BSA on the ion exchanger was determined experimentally. The maximum amounts of inorganic anion exchanged for BSA were 1% and 0.4% of the exchange capacity of the ion exchanger at pH 6.9, respectively. Since the effect of the ion exchange on the adsorption appeared small, BSA may be adsorbed mainly by electrostatic attraction when pH >/= 5.05 and by hydrophobic interaction or hydrogen bonding at pH 4.8. When NaCl coexisted in the solution, the shape of the isotherm was similar to the Langmuir isotherm, but it is shifted to the right. When the concentration of NaCl was 0.2 mol/dm(3), BsA was not adsorbed on the resin. When BSA was dissolved in pure water, the saturation capacity of BSA on HPO(4) (2-),-orm resin was about 2 times larger than that for adsorption from the solution with buffer (pH 6.9 and 8.79). The saturation capacity for adsorption of BSA in pure water on HPO(4) (2-) + H(2)O(4) (-)-from resin was much smaller than that from the solution with buffer. The isotherms for univalent Cl(-)-and H(2)PO(4) (-)-form resin was peculiar; that is, the amount of BSA adsorbed decreased with increasing the liquid-phase equilibrium concentration of BSA. (c) 1993 John Wiley & Sons, Inc.  相似文献   
23.
Protein extractions using aerosol OT (AOT)-isooctane reverse micelle solutions have been studied to explore the potential for separating and enriching proteins with the reversed micellar extraction. The effects of pH, ionic strength, and different cations of chlorides in a bulk aqueous phase and of AOT concentration in an organic phase on the partitioning of lysozyme and myoglobin and the solubilization of water are presented in detail. The extraction of lysozyme was affected by the concentration of potassium or barium but was almost independent of that of sodium or calcium, whose ionic diameter is smaller than that of potassium and barium. For the extraction of myoglobin, however, the effect of barium concentration was not appreciable. Lysozyme could be enriched into the reversed micellar phase up to 30 times the aqueous feed concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   
24.
Polyclonal antisera were raised against various subregions of Saccharomyces cerevisiae adenylyl cyclase in order to examine the molecular mechanism of interaction between adenylyl cyclase and RAS proteins. One of the antisera was found to activate adenylyl cyclase to an extent comparable to that activated by saturating amounts of yeast RAS2 protein produced in Escherichia coli. The stimulatory effect of this antiserum was shown to be additive with RAS2 protein when both antisera and RAS2 protein were present at low concentrations. At saturating amounts of RAS2 protein, the antisera did not exhibit additional stimulatory effects, suggesting that the actions of RAS2 protein and the antisera are complementary with each other. The antigenic determinant for the antibody involved in the activation was mapped to a 14-amino-acid segment, 1452-NSVDNGADVANLSY-1465, located between the leucine-rich repeats and the catalytic domain of adenylyl cyclase. Certain missense mutations affecting this 14-amino acid segment significantly reduced the response of adenylyl cyclase to both activating antibody and RAS proteins. These results suggest that this segment of adenylyl cyclase is intimately involved in the mechanism by which RAS proteins activate this downstream effector.  相似文献   
25.
Genetic analysis of yeast RAS1 and RAS2 genes   总被引:59,自引:0,他引:59  
We present a genetic analysis of RAS1 and RAS2 of S. cerevisiae, two genes that are highly homologous to mammalian ras genes. By constructing in vitro ras genes disrupted by selectable genes and introducing these by gene replacement into the respective ras loci, we have determined that neither RAS1 nor RAS2 are by themselves essential genes. However, ras1 - ras2 - spores of doubly heterozygous diploids are incapable of resuming vegetative growth. We have determined that RAS1 is located on chromosome XV, 7 cM from ade2 and 63 cM from his3; and RAS2 is located on chromosome XIV, 2 cM from met4 . We have also constructed by site-directed mutagenesis a missense mutant, RAS2val19 , which encodes valine in place of glycine at the nineteenth amino acid position, the same sort of missense mutation that is found in some transforming alleles of mammalian ras genes. Diploid yeast cells that contain this mutation are incapable of sporulating efficiently, even when they contain wild-type alleles.  相似文献   
26.
Summary The ultrastructure of the synapses in the brain of the monogenean Gastrocotyle trachuri (Platyhelminthes) is described. The synapses consist of one presynaptic terminal separated by a uniformly wide synaptic cleft, from one or more postsynaptic elements. The presynaptic terminals are characterized by the presence of paramembranous dense projections and associated synaptic vesicles. The postsynaptic elements while possessing membrane densities, are usually devoid of vesicles.The structure of the synapses in the brain of Gastrocotyle is compared to synapses from other platyhelminths.  相似文献   
27.
Three proteins with molecular masses of 35, 55, and 75 kDa were found in an oriC complex fraction after purification through CsCl density gradient centrifugation (W. G. Hendrickson, T. Kusano, H. Yamaki, R. Balakrishnan, M. King, J. Murchie, and M. Schaechter, Cell 30:915-923, 1982). Of these three proteins, the 55-kDa protein was determined to be glycogen synthase on the basis of the N-terminal amino acid sequence and the molecular weight. The oriC complex was formed in glgA mutant cells, which produce no detectable glycogen, as well as in wild-type cells. None of the 35-, 55-, and 75-kDa proteins were detected in the fraction from this mutant. The results indicate that these proteins were not constituents of the oriC complex.  相似文献   
28.
Modulation of the gamma-aminobutyric acidB (GABAB) receptor-mediated response by protein kinase C (PKC) was examined with regard to inhibition by stimulation of the GABAB receptor of stimulation-evoked release of noradrenaline (NA) from slices of cerebellar cortex and of acetylcholine (ACh) from strips of ileum. 12-O-Tetradecanoylphorbol 13-acetate (TPA) potentiated the high K(+)-evoked Ca2+-dependent release of NA and ACh, but not the ouabain-evoked release, even in the presence of external Ca2+. The potentiating effect was antagonized by sphingosine, thereby suggesting that PKC participates in the exocytotic-vesicular release of neurotransmitters, but does not do so in case of a nonvesicular release. GABA inhibited the high K(+)-evoked release of NA and ACh, but not the ouabain-evoked Ca(2+)-independent release. The effect of GABA was mimicked by baclofen and was antagonized by phaclofen, thereby suggesting that stimulation of the GABAB receptor inhibits the vesicular but not the nonvesicular release of neurotransmitters. TPA suppressed the GABAB receptor-mediated inhibition of high K(+)-evoked release of NA and ACh. The effect of TPA was antagonized by sphingosine. These results indicate that stimulation of the GABAB receptor inhibits the stimulation-evoked Ca(2+)-dependent release of neurotransmitters and that activation of PKC suppresses the GABAB receptor-mediated response.  相似文献   
29.
An excess release of excitatory amino acids (EAA) is an important factor for postischemic brain damage. In the present communication, we demonstrate that cultured hippocampal cells release EAA after hypoxic-hypoglycemic treatment. The amounts of EAA released from astrocytes were appreciably above those released from neurons. Furthermore, the amount of aspartate released from astrocytes was comparable to that of glutamate, although the endogenous content of aspartate was one-fifth that of glutamate. The endogenous content of aspartate in astrocytes increased even after hypoxic-hypoglycemic treatment. These results suggests that ischemic neuronal death is due, at least in part, to the excitotoxicity of aspartate and glutamate derived from surrounding astrocytes.  相似文献   
30.
Continuous butanol/isopropanol fermentation with immobilized Clostridium isopropylicum was performed in a downflow column reactor using molasses as the substrate. In order to prevent product inhibition and at the same time obtain high concentration of the products, the column reactor was coupled with a pervaporation module using a supported liquid membrane. The liquid membrane was prepared with oleyl alcohol nontoxic to the microorganism. In comparison with the continuous fermentation without product removal, the specific butanol production rate was 2 times higher. The butanol concentration in the permeate was 230 kg/m(3), which was about 50 times higher than that in the culture broth. A numerical investigation suggested a further increase in the productivity by improving the module construction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号