首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   19篇
  2024年   1篇
  2022年   1篇
  2021年   11篇
  2020年   2篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   11篇
  2013年   18篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   11篇
  2008年   11篇
  2007年   3篇
  2006年   6篇
  2005年   8篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
11.
12.
The presence of Paramecium decaurelia (three strains) and Paramecium dodecaurelia (two strains) were recorded in Japan, for the first time in this country and outside the USA.  相似文献   
13.
14.
The effects of the morphological constraint of maximum reproductive output (reproductive capacity) and the size at which individuals can avoid heavy mortality (refuge size) on the resource allocation pattern between growth and reproduction are investigated using a dynamic modelling approach for a population of Yoldia notabilis (Mollusca: Bivalvia) in Otsuchi Bay, northeastern Japan. A state variable model is developed using field data on shell length, somatic weight, production, survivorship and reproductive capacity of the bivalve. The optimal allocation pattern is characterized by sudden switching from growth to reproduction without the assumption of reproductive capacity, while simultaneous investment in growth and reproduction becomes optimal when maximum reproductive output is limited by reproductive capacity. Size-specific reproductive effort, size at maturity and the growth curve predicted by the latter model fit more closely to the field data, suggesting that size-limited reproductive capacity can play an important role in the evolution of the observed resource allocation pattern. The mortality pattern affects optimal size at maturity, but not size-specific reproductive effort after maturity. When refuge size is fixed, optimal size at maturity increases with survivorship above refuge size. Optimal size at maturity changes in a more complex way with changes in refuge size. Size at maturity remains constant when refuge size is small, increases when it is intermediate, and decreases when it is large. The results suggest that refuge size is an important factor in the evolution of size at maturity, although its contribution varies depending on the values of other factors, such as size-dependent production and survivorship above refuge size. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
15.

Background

Activated mineralocorticoid receptors influence the association between daily salt intake and blood pressure. A relatively low mineralocorticoid receptor function is reported to be a risk for mental distress such as depression. Since mental distress is also a known risk for hypertension and cardiovascular disease, understanding of the association between estimated daily salt intake and mental distress contributing to hypertension is important for risk estimation for cardiovascular disease. However, no single study has reported this association.

Methods

We conducted a cross-sectional study of 1014 Japanese men undergoing general health check-ups. Mental distress was diagnosed as a Kessler 6 scale score ≥5. We also classified mental distress by levels of hypertension. Estimated daily salt intake was calculated from a causal urine specimen.

Results

Independent from classical cardiovascular risk factors and thyroid disease, we found a significant inverse association between estimated daily salt intake and mental distress. When we analyzed for mental distress and hypertension, we also found a significant association. With the reference group being the lowest tertiles of estimated daily salt intake, the multivariable odds ratios (ORs) of mental distress and mental distress with hypertension for the highest tertiles were 0.50 (0.29–0.88) and 0.46 (0.22–0.96).

Conclusions

Lower estimated daily salt intake is a significant risk of mental distress for rural community-dwelling Japanese men. Since depression is reported to be associated with cardiovascular disease, risk estimation for the lower intake of salt on mental distress, especially for mental distress with hypertension, may become an important tool to prevent cardiovascular disease.  相似文献   
16.
Accumulating evidence suggests that Sonic hedgehog (Shh) signaling plays a crucial role in eye vesicle patterning in vertebrates. Shh promotes expression of Pax2 in the optic stalk and represses expression of Pax6 in the optic cup. Shh signaling contributes to establishment of both proximal–distal and dorsal–ventral axes by activating Vax1, Vax2, and Pax2. In the dorsal part of the developing retina, Bmp4 is expressed and antagonizes the ventralizing effects of Shh signaling through the activation of Tbx5 expression in chick and Xenopus. To examine the roles of Shh signaling in optic cup formation and optic stalk development, we utilized the Smoothened (Smo) conditional knockout (CKO) mouse line. Smo is a membrane protein which mediates Shh signaling into inside of cells. Cre expression was driven by Fgf15 enhancer. The ventral evagination of the optic cup deteriorated from E10 in the Smo-CKO, whereas the dorsal optic cup and optic stalk develop normally until E11. We analyzed expression of various genes such as Pax family (Pax2/Pax6), Vax family (Vax1/Vax2) and Bmp4. Bmp4 expression was greatly upregulated in the optic vesicle by the 21-somite stage. Then Vax1/2 expression was decreased at the 20- to 24-somite stages. Pax2/6 expression was affected at the 27- to 32-somite stages. Our data suggest that the effects of the absence of Shh signaling on Vax1/Vax2 are mediated through increased Bmp4 expression throughout the optic cup. Also unchanged patterns of Raldh2 and Raldh3 suggest that retinoic acid is not the downstream to Shh signaling to control the ventral optic cup morphology.  相似文献   
17.
Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion‐resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free‐living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion‐degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion‐treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 106/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using Vmax and Km values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont‐mediated insecticide resistance.  相似文献   
18.
For the full activation of cyclin‐dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK‐activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate‐type CAKs, three CDKDs (CDKD;1CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post‐embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1‐1 cdkd;3‐1 pollen grains were defective in pollen mitosis I and II, producing one‐cell or two‐cell pollen grains that lacked fertilization ability. We also found that the double knock‐out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post‐embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1‐1 cdkd;3‐1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post‐embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.  相似文献   
19.
20.
Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号