首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   995篇
  免费   60篇
  国内免费   3篇
  2022年   10篇
  2021年   15篇
  2020年   11篇
  2019年   4篇
  2018年   14篇
  2017年   16篇
  2016年   25篇
  2015年   31篇
  2014年   39篇
  2013年   65篇
  2012年   56篇
  2011年   62篇
  2010年   42篇
  2009年   28篇
  2008年   46篇
  2007年   55篇
  2006年   57篇
  2005年   54篇
  2004年   46篇
  2003年   39篇
  2002年   47篇
  2001年   34篇
  2000年   14篇
  1999年   17篇
  1998年   11篇
  1997年   13篇
  1996年   8篇
  1995年   13篇
  1994年   11篇
  1993年   7篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   12篇
  1988年   16篇
  1987年   16篇
  1986年   14篇
  1985年   6篇
  1984年   7篇
  1982年   13篇
  1979年   6篇
  1978年   6篇
  1974年   4篇
  1973年   4篇
  1972年   4篇
  1971年   3篇
  1970年   4篇
  1969年   4篇
  1968年   3篇
  1966年   3篇
排序方式: 共有1058条查询结果,搜索用时 15 毫秒
141.
We found that the podocarpic acid structure provides a new scaffold for chemical modulators of large-conductance calcium-activated K(+) channels (BK channels). Structure-activity analysis indicates the importance of both the arrangement (i.e., location and orientation) of the carboxylic acid functionality of ring A and the hydrophobic region of ring C for expression of BK channel-opening activity.  相似文献   
142.
The genus Stichillus in Japan is revised. Three species are recognized: S. japonicus (Matsumura), S. spinosus Liu and Chou and S. cylindratus sp. nov. Stichillus brunneicornis Beyer is excluded from the Japanese fauna. These Japanese species are described and keyed. The male genitalia and the female terminalia are illustrated. Some unique characters of the male genitalia in the genus are reported, and morphology of the male genitalia and the female terminalia is discussed.  相似文献   
143.
Microtubules (MTs) and microfilaments (MFs) are known to modulate mitochondrial morphology, distribution and function. However, little is known evidence about the role of intermediate filaments (IFs) in modulating mitochondria except desmin. To investigate whether or not the IFs regulate mitochondrial morphology, distribution, and function, we manipulated the IFs of cultured epithelial cells to express a mutant keratin 18 (K18). In contrast to the filamentous expression of wild K18, mutant K18 induced aggregation of K8/18, showing no fine IF network in the cells. In mutant K18-transfected cells, the mitochondria were fragmented into small spheroids, although they were observed as mitochondrial fibers in un-transfected or wild K18-transfected cells. Fluorescence recovery after photobleaching of fluorescence-labeled mitochondria was markedly less in the mutant K18-transfected cells, although a significant recovery was confirmed in wild K18-transfected cells. These findings suggest that the IFs are important for the maintenance of normal mitochondrial structures.  相似文献   
144.
The relationship between electrical activity and spike‐induced Ca2+ increases in dendrites was investigated in the identified wind‐sensitive giant interneurons in the cricket. We applied a high‐speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi‐ or contra‐lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike‐triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage‐dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 234–244, 2002; DOI 10.1002/neu.10032  相似文献   
145.
The relationship between electrical activity and spike-induced Ca2+ increases in dendrites was investigated in the identified wind-sensitive giant interneurons in the cricket. We applied a high-speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi- or contra-lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike-triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage-dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons.  相似文献   
146.
The full-length sense cDNA for sweet potato granule-bound starch synthase I (GBSSI) driven by the CaMV 35S promoter was introduced into the sweet potato by Agrobacterium tumefaciens-mediated transformation. Out of the 26 transgenic plants obtained, one plant showed the absence of amylose in the tuberous root as determined by the iodine colorimetric method. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene occurred in the transgenic sweet potato plant. These results demonstrate that starch composition in the tuberous root of sweet potato can be altered by genetic transformation.  相似文献   
147.
K Nagai  M Sekitani  K Otani  H Nakagawa 《Life sciences》1988,43(20):1575-1582
Studies were made on whether hereditary microphthalmic rats (1), which are congenitally blind, showed a hyperglycemic response to intracerebroventricular injection of 2-deoxy-D-glucose (2DG) in their subjective light period. In contrast to previous findings in normal rats in which 2DG injection caused light-cycle dependent hyperglycemia (2) and bilateral lesion of the suprachiasmatic nucleus (SCN) completely abolished this hyperglycemia (3), 2DG injection caused no and only slight hyperglycemia in male and female rats with hereditary microphthalmia, respectively. Gross and histological examinations indicated that these rats had no optic nerve or retinohypothalamic tract and that their SCN had an abnormal structure. Locomotive activity recordings showed that all the blind rats had a free-running circadian activity rhythm. These findings suggest that the projection sites of the retinohypothalamic tract to the SCN are involved in the mechanism of the hyperglycemic response to 2DG, but that neural cells, which may be responsible for the generation of circadian rhythms, are not. We have reported that when adult rats were blinded by orbital enucleation, their hyperglycemic response to 2DG was suppressed temporarily 3-5 weeks after the operation, but that their plasma insulin level was basically higher and increased further after 2DG injection during this period (4). In congenitally blind rats, however, the basal plasma insulin level was not higher and the level did not change after 2DG treatment. This difference is discussed from the view point of the role of the premature SCN in regulation of the plasma insulin concentration.  相似文献   
148.
149.
150.
A cribriform plate, a perpendicular plate, and two lateral masses are major components of the ethmoid bone of mammals. Notwithstanding the noticeable bone, virtually sitting in the center of the skull, extensive modifications of the skull of modern cetaceans, especially odontocetes (toothed whales), and the lack of clarity as to what characteristics delimit each element of the ethmoid has made the problem of the nature of the cetacean ethmoid more complicated and elusive than in other, less modified mammals. Furthermore, contention as to whether a perpendicular plate of the ethmoid, or the mesethmoid, exists in all mammals including cetaceans has remained unsettled. In odontocetes, the mesethmoid has been variably identified not only as the osseous nasal septum but also as the mediodorsal region of the posterior wall of the nasal passage below the nasals, as a mass of bone encased by the vomer in front of the osseous nasal cavity at the base of the rostrum, and as a combination of some portions mentioned above. The presence or absence of the mesethmoid in various groups of mammals has attracted the attention of some biologists, and here, I demonstrate that cetaceans have no mesethmoid. The close inspection of the ontogenetic changes of the basicranial elements in cetaceans reveals that a mass of bone ensheathed by the vomer in front, or at the level of the osseous nasal cavity is actually the presphenoid. It is highly likely that in odontocetes the posterior wall of the nasal passages below the nasals consists of the combination of the frontal, the imperforated cribriform plate, the paired ectethmoids, and the vomer, the latter three of which partially concealing the presphenoid dorsally and laterally as the ontogeny proceeds. In contrast, mysticetes clearly display ethmoturbinates and a cribriform plate, which are morphologically similar to those in terrestrial mammals. J. Morphol. 277:1661–1674, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号