首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   778篇
  免费   44篇
  国内免费   3篇
  825篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2018年   13篇
  2017年   8篇
  2016年   23篇
  2015年   25篇
  2014年   33篇
  2013年   49篇
  2012年   47篇
  2011年   53篇
  2010年   40篇
  2009年   24篇
  2008年   42篇
  2007年   55篇
  2006年   64篇
  2005年   50篇
  2004年   41篇
  2003年   46篇
  2002年   45篇
  2001年   18篇
  2000年   9篇
  1999年   13篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   3篇
  1990年   6篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1969年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有825条查询结果,搜索用时 78 毫秒
91.
92.
The gene for a novel glucanotransferase, isocyclomaltooligosaccharide glucanotransferase (IgtY), involved in the synthesis of a cyclomaltopentaose cyclized by an alpha-1,6-linkage [ICG5; cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}] from starch, was cloned from the genome of B. circulans AM7. The IgtY gene, designated igtY, consisted of 2,985 bp encoding a signal peptide of 35 amino acids and a mature protein of 960 amino acids with a calculated molecular mass of 102,071 Da. The deduced amino-acid sequence showed similarities to 6-alpha-maltosyltransferase, alpha-amylase, and cyclomaltodextrin glucanotransferase. The four conserved regions common in the alpha-amylase family enzymes were also found in this enzyme, indicating that this enzyme should be assigned to this family. The DNA sequence of 8,325-bp analyzed in this study contained two open reading frames (ORFs) downstream of igtY. The first ORF, designated igtZ, formed a gene cluster, igtYZ. The amino-acid sequence deduced from igtZ exhibited no similarity to any proteins with known or unknown functions. IgtZ was expressed in Escherichia coli, and the enzyme was purified. The enzyme acted on maltooligosaccharides that have a degree of polymerization (DP) of 4 or more, amylose, and soluble starch to produce glucose and maltooligosaccharides up to DP5 by a hydrolysis reaction. The enzyme (IgtZ), which has a novel amino-acid sequence, should be assigned to alpha-amylase. It is notable that both IgtY and IgtZ have a tandem sequence similar to a carbohydrate-binding module belonging to a family 25. These two enzymes jointly acted on raw starch, and efficiently generated ICG5.  相似文献   
93.
We examined the enzymatic function of recombinant CYP2C19 in enantiomeric hexobarbital (HB) 3'-hydroxylation, and searched the roles of amino acid residues, such as Phe-100, Phe-114, Asp-293, Glu-300, and Phe-476 of CYP2C19 in the stereoselective HB 3'-hydroxylation, using a yeast cell expression system and site-directed mutagenesis method. CYP2C19 wild-type exerted substrate enantioselectivity of (R)-HB>(S)-HB and metabolite diastereoselectivity of 3'(R)<3'(S) in 3'-hydroxylation of HB enantiomers. The substitution of Asp-293 by alanine failed to yield an observable peak at 450 nm in its reduced carbon monoxide-difference spectrum. CYP2C19-E300A and CYP2C19-E300V with alanine and valine, respectively, in place of Glu-300 exerted total HB 3'-hydroxylation activities of 45 and 108%, respectively, that of the wild-type. Interestingly, these two mutants showed substrate enantioselectivity of (R)-HB<(S)-HB, which is opposite to that of the wild-type, while metabolite diasteroselectivity remained unchanged. The replacement of Phe-476 by alanine increased total HB 3'-hydroxylation activity to approximately 3-fold that of the wild-type. Particularly, 3'(S)-OH-(S)-HB-forming activity elevated to 7-fold that of the wild-type, resulting in the reversal of the substrate enantioselectivity. In contrast, the substitution of phenylalanine at positions 100 and 114 by alanine did not produce a remarkable change in the total activity or the substrate enantioselectivity. These results indicate that Glu-300 and Phe-476 are important in stereoselective oxidation of HB enantiomers by CYP2C19.  相似文献   
94.
95.
Octopamine (OA) is a biogenic amine with a widespread distribution in the insect nervous system. OA modulates and/or regulates various behavioral patterns of insects as a neurotransmitter, neuromodulator, and neurohormone. OA receptors (OARs) belong to one of the families of G protein-coupled receptors (GPCRs). The binding of OA to OARs is coupled to the activation of the specific G proteins, which induces the release of intracellular second messengers such as cAMP and/or calcium. We previously reported the isolation of an OAR (BmOAR1) from Bombyx mori. In the study presented here, five mutated BmOAR1s were constructed with a point mutation in the putative binding crevice and expressed in HEK-293 cells. The S202A mutant receptor was found to retain the cAMP response to OA as does the wild-type receptor, but such function was impaired in the other four mutants (D103A, S198A, Y412F, and S198A/S202A). Furthermore, competition binding assays using [3H]OA and calcium mobilization assays gave results that were approximately consistent with those of the cAMP assays. Taken together, the results indicate that D103 and S198 are involved in the binding and activation of BmOAR1 with OA through electrostatic or hydrogen bond interactions, but S202 does not appear to participate in this process. Y412 seems to be involved in one of the active forms of BmOAR1. These findings should prove helpful in designing new pest control chemicals.  相似文献   
96.
Certain glycosphingolipids play important roles as cellular receptor for bacterial toxins with high specificity and strong affinity. In particular AB(5) toxins exhibit typical modes of cell attachment with B5 and invasion and biological effects in cells with A subunit. Subtilase cytotoxin (SubAB) is the prototype of a recently discovered AB(5) cytotoxin family produced by certain strains of Shiga toxigenic Escherichia coli, and shows highly specific serine protease activity toward endoplasmic reticulum chaperone Bip. Since this toxin bound to a mimic of ganglioside GM2, GM2 has been considered to be possible receptor for SubAB. Using six kinds of glycosylation-defective knockout mice lacking certain group of glycosphingolipids, sensitivity to SubAB in vivo was analyzed. Consequently, all mutant mice died at around 70h after intraperitoneal injection of 10 microg (or 7.5 microg) of SubAB as well as wild type mice. These results indicated none of glycolipids are not pivotal receptor for SubAB in the body.  相似文献   
97.
98.
The LARGE gene is thought to encode a putative glycosyltransferase because of its typical topology. However, no enzyme activity has been demonstrated yet, although the gene apparently supports the functional maturation of alpha-dystroglycan by glycosylation when it is transfected into cells. A novel homologous gene to LARGE was identified and named LARGE2. LARGE2 recombinant was co-expressed with alpha-dystroglycan in human embryonic kidney 293T cells to determine its activity to support the maturation of alpha-dystroglycan. The alpha-dystroglycan co-transfected with LARGE2 was more highly glycosylated than that co-transfected with LARGE. Pull-down experiments demonstrated binding activity of LARGE2 as well as LARGE toward alpha-dystroglycan. LARGE2 was found to support the maturation of alpha-dystroglycan more effectively than LARGE. Both of them are ubiquitously expressed in many tissues, except the brain where LARGE2 was not expressed at all. This compensatory function can explain the residual functionally glycosylated alpha-dystroglycan in a patient with MDC1D whose LARGE genes are congenitally null.  相似文献   
99.

Background

Irritable bowel syndrome with constipation (IBS-C) is a representative psychosomatic disorder. Several pathophysiological factors have been linked to IBS symptoms such as the modulation of gastrointestinal motility, visceral hypersensitivity, dysregulation of the gut-brain axis, genetic and environmental factors, sequelae of infection, and psychosocial disorders. It is likely that biopsychosocial aspects of IBS-C underlie its gender and age effects. However, the influence of each symptom of IBS-C by gender and age is not well understood. We hypothesized that the expression rate of each IBS-C symptom in females and in subjects aged 20–49 years was higher than that of subjects who were male and aged 50–79 years.

Methods

We conducted an internet survey of 30,000 adults from the general Japanese population. IBS-C subjects were asked to answer a questionnaire on the degree of anxiety, thoughts about bowel habits, and their dominant gastrointestinal symptoms together with exacerbation factors. The correlation between gender and age and IBS-C symptoms was analyzed.

Results

When analyzed by gender, the expression rate of abdominal discomfort, abdominal distention, and abdominal fullness was significantly higher in female than male IBS-C subjects (66.5% vs. 58.7%, p?<?0.05; 54.7% vs. 43.6%, p?<?0.01; 18.9% vs. 9.6%, p?<?0.01, respectively). When analyzed by age, the expression rate of abdominal distention and abdominal pain was significantly higher among IBS-C subjects aged 20–49 years than those aged 50–79 years (55.7% vs. 46.8%, p?<?0.05; 36.6% vs. 20.6%, p?<?0.001, respectively). In contrast, there was no gender or age differences with regard to the most common and bothersome symptom (abdominal bloating) among IBS-C subjects.

Conclusions

The expression rate of some IBS-C symptoms was higher among females and those aged 20–49 years than males and those aged 50–79 years, respectively. It is important to understand the impact of symptoms by gender and age to evaluate the pathology of IBS-C from a biopsychosocial perspective.

Trial registration

Although this survey was an anonymous internet survey, we obtained informed consent for the study as an online response. The disclosure of this study was approved by the Ethics Committee of Tohoku University Graduate School of Medicine (approval number: 2015–1-405).
  相似文献   
100.
Mononuclear cells infiltrating the interstitium are involved in renal tubulointerstitial injury. The unilateral ureteral obstruction (UUO) is an established experimental model of renal interstitial inflammation. In our previous study, we postulated that L-selectin on monocytes is involved in their infiltration into the interstitium by UUO and that a sulfated glycolipid, sulfatide, is the physiological L-selectin ligand in the kidney. Here we tested the above hypothesis using sulfatide- and L-selectin-deficient mice. Sulfatide-deficient mice were generated by gene targeting of the cerebroside sulfotransferase (Cst) gene. Although the L-selectin-IgG chimera protein specifically bound to sulfatide fraction in acidic lipids from wild-type kidney, it did not show such binding in fractions of Cst(-/-) mice kidney, indicating that sulfatide is the major L-selectin-binding glycolipid in the kidney. The distribution of L-selectin ligand in wild-type mice changed after UUO; sulfatide was relocated from the distal tubules to the peritubular capillaries where monocytes infiltrate, suggesting that sulfatide relocated to the endothelium after UUO interacted with L-selectin on monocytes. In contrast, L-selectin ligand was not detected in Cst(-/-) mice irrespective of UUO treatment. Compared with wild-type mice, Cst(-/-) mice showed a considerable reduction in the number of monocytes/macrophages that infiltrated the interstitium after UUO. The number of monocytes/macrophages was also reduced to a similar extent in L-selectin(-/-) mice. Our results suggest that sulfatide is a major L-selectin-binding molecule in the kidney and that the interaction between L-selectin and sulfatide plays a critical role in monocyte infiltration into the kidney interstitium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号