首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   37篇
  国内免费   3篇
  2022年   3篇
  2021年   9篇
  2020年   8篇
  2018年   9篇
  2017年   6篇
  2016年   19篇
  2015年   20篇
  2014年   27篇
  2013年   43篇
  2012年   37篇
  2011年   43篇
  2010年   33篇
  2009年   20篇
  2008年   30篇
  2007年   43篇
  2006年   45篇
  2005年   40篇
  2004年   33篇
  2003年   32篇
  2002年   34篇
  2001年   11篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1969年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有632条查询结果,搜索用时 15 毫秒
71.
Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.  相似文献   
72.
In mammalian cells Cdk2 activity during the G(1)-S transition is mainly controlled by p27(KIP1). Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21(CIP1)-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6.  相似文献   
73.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   
74.
Our recent study demonstrated that higher expression of N-myc downregulated gene 1 (NDRG1) is closely correlated with poor prognosis in gastric cancer patients. In this study, we asked whether NDRG1 has pivotal roles in malignant progression including metastasis of gastric cancer cells. By gene expression microarray analysis expression of NDRG1 showed the higher increase among a total of 3691 up-regulated genes in a highly metastatic gastric cancer cell line (58As1) than their parental low metastatic counterpart (HSC-58). The highly metastatic cell lines showed decreased expression of E-cadherin, together with enhanced expression of vimentin and Snail. This decreased expression of E-cadherin was restored by Snail knockdown in highly metastatic cell lines. We next established stable NDRG1 knockdown cell lines (As1/Sic50 and As1/Sic54) from the highly metastatic cell line, and both of these cell lines showed enhanced expression of E-cadherin and decreased expression of vimentin and Snail. And also, E-cadherin promoter-driven luciferase activity was found to be increased by NDRG1 knockdown in the highly metastatic cell line. NDRG1 knockdown in gastric cancer cell showed suppressed invasion of cancer cells into surround tissues, suppressed metastasis to the peritoneum and decreased ascites accumulation in mice with significantly improved survival rates. This is the first study to demonstrate that NDRG1 plays its pivotal role in the malignant progression of gastric cancer through epithelial mesenchymal transition.  相似文献   
75.
Detailed structure of the male genitalia of Anevrina is described. Hitherto unknown morphological characters of the internal sclerites relating to the epandrium and hypandrium are illustrated and elucidated. The subepandrial sclerite + bacilliform sclerites are distinctly modified, and the typical subepandrial sclerite is not recognizable. The right base of the medially shifted right surstylus is not connected to the posterior margin of the epandrium, and is directly supported by a robust bacilliform sclerite. The robust bacilliform sclerites are greatly developed inside the epandrium, and extended to three clasping components, the left surstylus, the medially shifted right surstylus and a pair of clasping lobes on the posteroventral margin of the right side of the epandrium. The upper lobe of a pair of clasping lobes on the right side of the epandrium is considered to originally have been situated on the left side and subsequently shifted to the right side. The plesiomorphic state of the clasping components relative to Anevrina is thought to be symmetrically four, comprising both the left and right surstyli and the posterior edge of both sides of the epandrium, indicating that the amazing phenomenon of cross-shifting of the clasping components has occurred in Anevrina. A cladogram generated based on the genitalic characters observed in this study shows sister groups within Anevrina, namely an Anevrina urbana-group comprised of A. urbana, A. setigera, A. olympiae, A. variabilis, A. thoracica, and an Anevrina unispinosa-group comprised of A. unispinosa, A. curvinervis, A. luggeri and A. macateei.  相似文献   
76.
The bacterial flagellar motor is a rotary motor in the cell envelope of bacteria that couples ion flow across the cytoplasmic membrane to torque generation by independent stators anchored to the cell wall. The recent observation of stepwise rotation of a Na+-driven chimeric motor in Escherichia coli promises to reveal the mechanism of the motor in unprecedented detail. We measured torque-speed relationships of this chimeric motor using back focal plane interferometry of polystyrene beads attached to flagellar filaments in the presence of high sodium-motive force (85 mM Na+). With full expression of stator proteins the torque-speed curve had the same shape as those of wild-type E. coli and Vibrio alginolyticus motors: the torque is approximately constant (at ∼ 2200 pN nm) from stall up to a “knee” speed of ∼ 420 Hz, and then falls linearly with speed, extrapolating to zero torque at ∼ 910 Hz. Motors containing one to five stators generated ∼ 200 pN nm per stator at speeds up to ∼ 100 Hz/stator; the knee speed in 4- and 5-stator motors is not significantly slower than in the fully induced motor. This is consistent with the hypothesis that the absolute torque depends on stator number, but the speed dependence does not. In motors with point mutations in either of two critical conserved charged residues in the cytoplasmic domain of PomA, R88A and R232E, the zero-torque speed was reduced to ∼ 400 Hz. The torque at low speed was unchanged by mutation R88A but was reduced to ∼ 1500 pN nm by R232E. These results, interpreted using a simple kinetic model, indicate that the basic mechanism of torque generation is the same regardless of stator type and coupling ion and that the electrostatic interaction between stator and rotor proteins is related to the torque-speed relationship.  相似文献   
77.
78.
When cells traversing G(1) are irradiated with UV light, two parallel damage checkpoint pathways are activated: Chk1-Cdc25A and p53-p21(WAF1/CIP1), both targeting Cdk2, but the latter inducing a long lasting arrest. In similarly treated S phase-progressing cells, however, only the Cdc25A-dependent checkpoint is active. We have recently found that the p21-dependent checkpoint can be activated and induce a prolonged arrest if S phase cells are damaged with a base-modifying agent, such as methyl methanesulfonate (MMS) and cisplatin. But the mechanistic basis for the differential activation of the p21-dependent checkpoint by different DNA damaging agents is not understood. Here we report that treatment of S phase cells with MMS but not a comparable dose of UV light elicits proteasome-mediated degradation of Cdc6, the assembler of pre-replicative complexes, which allows induced p21 to bind Cdk2, thereby extending inactivation of Cdk2 and S phase arrest. Consistently, enforced expression of Cdc6 largely eliminates the prolonged S phase arrest and Cdk2 inactivation induced with MMS, whereas RNA interference-mediated Cdc6 knockdown not only prolongs such arrest and inactivation but also effectively activates the p21-dependent checkpoint in the UV-irradiated S phase cells.  相似文献   
79.
To investigate how intercellular coupling can be changed during Ca2+ overloading of ventricular muscle, we studied Ca2+ signals in individual cells and the histochemistry of the major gap junction channel, connexin43 (Cx43), using multicellular preparations. Papillary muscles were obtained from guinea pig ventricles and loaded with rhod-2. Sequential Ca2+ images of surface cells were obtained with a confocal microscope. In intact muscles, all cells showed simultaneous Ca2+ transients in response to field stimulation over a field of view of 0.3 x 0.3 mm2. In severely Ca2+-overloaded muscles, obtained by high-frequency stimulation in nonflowing Krebs solution, cells became less responsive to stimulation. Furthermore, nonsimultaneous but serial onsets of Ca2+ transients were often detected, suggesting a propagation delay of action potentials. The time lag of the onset between two aligned cells was sometimes as long as 100 ms. Similar lags were also observed in muscles with gap junction channels inhibited by heptanol. To investigate whether the phosphorylation state of Cx43 is affected in Ca2+-overloaded muscles, the distributions of phosphorylated and nonphosphorylated Cx43 were determined using specific antibodies. Most of the Cx43 was phosphorylated in the nonoverloaded muscles, whereas nonphosphorylated Cx43 was significantly elevated in severely Ca2+-overloaded muscles. Our results suggest that the propagation delay of action potential within a small area, a few square millimeters, can be a cause of abnormal conduction and a microreentry in Ca2+-overloaded heart. Inactivation of Na+ channels and inhibition of gap junctional communication may underlie the cell-to-cell propagation delay. Ca2+ transient; connexin43; propagation delay; gap junction; arrhythmia  相似文献   
80.
The genus Stichillus in Japan is revised. Three species are recognized: S. japonicus (Matsumura), S. spinosus Liu and Chou and S. cylindratus sp. nov. Stichillus brunneicornis Beyer is excluded from the Japanese fauna. These Japanese species are described and keyed. The male genitalia and the female terminalia are illustrated. Some unique characters of the male genitalia in the genus are reported, and morphology of the male genitalia and the female terminalia is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号