首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   45篇
  2023年   2篇
  2022年   14篇
  2021年   16篇
  2020年   7篇
  2019年   15篇
  2018年   18篇
  2017年   6篇
  2016年   29篇
  2015年   46篇
  2014年   49篇
  2013年   47篇
  2012年   66篇
  2011年   76篇
  2010年   39篇
  2009年   29篇
  2008年   51篇
  2007年   57篇
  2006年   52篇
  2005年   65篇
  2004年   55篇
  2003年   63篇
  2002年   54篇
  2001年   18篇
  2000年   16篇
  1999年   16篇
  1998年   10篇
  1997年   5篇
  1996年   10篇
  1995年   7篇
  1993年   4篇
  1992年   15篇
  1991年   4篇
  1990年   10篇
  1989年   3篇
  1988年   11篇
  1987年   5篇
  1986年   2篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   8篇
  1981年   8篇
  1980年   2篇
  1979年   7篇
  1978年   4篇
  1977年   5篇
  1975年   4篇
  1974年   3篇
  1970年   3篇
  1969年   3篇
排序方式: 共有1064条查询结果,搜索用时 15 毫秒
11.
Summary In an attempt to identify pancreatic islet cells emitting formaldehyde-induced fluorescence (FIF), the pancreatic islets of the domestic fowl were studied by combined fluorescence, ultrastructural, silver-impregnation and immunohistochemical methods in the same section or in consecutive semi-thin and ultra-thin sections. The results indicate that islet cells emitting intense FIF exhibit a strongly argyrophil reaction with the Grimelius' silver method and also immunohistochemical reaction with anti-glucagon serum, but not with anti-5-HT serum. Therefore, the fowl islet A cell, a peptide hormone-producing cell, stores simultaneously catecholamine as biogenic amine. The islet B and D cells did not display any FIF, any argyrophil reaction with the Grimelius' silver method, or any immunoreactivity with anti-glucagon or anti-5-HT sera. The fluorescent but non-argyrophil cells dispersed in the exocrine acinus may well be PP cells.  相似文献   
12.
A new system was developed for studying the assembly of collagen fibrils in vitro. A partially purified enzyme preparation containing both procollagen N-proteinase and c-proteinase (EC 3.4.24.00) activities was used to initiate fibril formation by removal of the N- and C-propeptides from type I procollagen in a physiological buffer at 35-37 degrees C. The kinetics of fibril formation were similar to those observed for fibril formation with tissue-extracted collagen in the same buffer system, except that the lag phase was longer. The longer lag phase was in part accounted for by the time required to convert procollagen to collagen. Similar results were obtained when an intermediate containing the C-propeptide but not the N-propeptide was used as a substrate. Therefore, removal of the c-propeptide appeared to be the critical step for fibril formation under the conditions used here. The fibrils formed by enzymic cleavage of procollagen or pCcollagen appeared microscopically to be more tightly packed than fibrils formed directly from collagen under the same conditions. This impression was confirmed by the observation that the fibrils formed by cleavage of procollagen were stable to temperatures 1.5-2 degrees C higher than fibers formed from extracted collagen under the same conditions. When smaller amounts of procollagen proteinase were used, the rate of cleavage of procollagen to collagen was markedly reduced. The fibrils which formed under these conditions were up to 3 micrometers in diameter. Some appeared to contain branch points.  相似文献   
13.
A new phenolic, hydroxyeucomic acid, and dopamine were isolated from Cattleya trianaei and their biological activities examined.  相似文献   
14.
A new lupin alkaloid, (+)-5,17-dehydromatrine N-oxide, was isolated from the fresh aerial parts of Euchresta japonica. Its structure was confirmed by spectrometric data and by direct comparison with a synthetic sample, prepared from (+)-sophoranol ((+)-5-hydroxymatrine). It was also concluded that (+)-5,17-dehydromatrine N-oxide and (+)-matrine N-oxide possess the same configuration with respect to the asymmetric nitrogen by NMR spectra.  相似文献   
15.
16.
17.
Two new cage-type lupin alkaloids, (?)-tsukushinamine-B and tsukushinamine-C, have been isolated from the fresh epigeal parts of Sophora franchetiana, along with (?)-cytisine, (?)-N-formylcytisine, (?)-rhombifoline, (?)-anagyrine, (?)-baptifoline and (±)-ammodendrine, as well as (?)-tsukushinamine-A. The structures of these novel tsukushinamine-type lupin alkaloids were determined by spectroscopic data and partly by a chemical reaction. Variations of the alkaloid contents in the seeds, seedlings and various parts of S. franchetiana were also examined.  相似文献   
18.
19.
D-Serine is known to act as an endogenous co-agonist of the N-methyl-D-aspartate receptor in the mammalian brain and is endogenously synthesized from L-serine by a pyridoxal 5'-phosphate-dependent enzyme, serine racemase. Though the soil-living mycetozoa Dictyostelium discoideum possesses no genes homologous to that of NMDA receptor, it contains genes encoding putative proteins relating to the D-serine metabolism, such as serine racemase, D-amino acid oxidase, and D-serine dehydratase. D. discoideum is an attractive target for the elucidation of the unknown functions of D-serine such as a role in cell development. As part of the elucidation of the role of D-serine in D. discoideum, we cloned, overexpressed, and examined the properties of the putative serine racemase exhibiting 46% amino acid sequence similarity with the human enzyme. The enzyme is unique in its stimulation by monovalent cations such as Na(+) in addition to Mg(2+) and Ca(2+), which are well-known activators for the mammalian serine racemase. Mg(2+) or Na(+) binding caused two- to ninefold enhancement of the rates of both racemization and dehydration. The half-maximal activation concentrations of Mg(2+) and Na(+) were determined to be 1.2?μM and 2.2?mM, respectively. In the L-serine dehydrase reaction, Mg(2+) and Na(+) enhanced the k (cat) value without changing the K (m) value. Alanine mutation of the residues E207 and D213, which correspond to the Mg(2+)-binding site of Schizosaccharomyces pombe serine racemase, abolished the Mg(2+)- and Na(+)-dependent stimulation. These results suggest that Mg(2+) and Na(+) share the common metal ion-binding site.  相似文献   
20.
Fbxo45 is an F-box protein that is restricted to the nervous system. Unlike other F-box proteins, Fbxo45 was found not to form an SCF complex as a result of an amino acid substitution in the consensus sequence for Cul1 binding. Proteomics analysis revealed that Fbxo45 specifically associates with PAM (protein associated with Myc), a RING finger-type ubiquitin ligase. Mice deficient in Fbxo45 were generated and found to die soon after birth as a result of respiratory distress. Fbxo45/ embryos show abnormal innervation of the diaphragm, impaired synapse formation at neuromuscular junctions, and aberrant development of axon fiber tracts in the brain. Similar defects are also observed in mice lacking Phr1 (mouse ortholog of PAM), suggesting that Fbxo45 and Phr1 function in the same pathway. In addition, neuronal migration was impaired in Fbxo45/ mice. These results suggest that Fbxo45 forms a novel Fbxo45-PAM ubiquitin ligase complex that plays an important role in neural development.Ubiquitin-dependent proteolysis is indispensable for various biological processes (3, 40). Protein ubiquitylation is mediated by several enzymes that act in concert, with a ubiquitin ligase (E3) playing a key role in substrate recognition (14). E3 enzymes contain specific structural motifs that mediate recruitment of a ubiquitin-conjugating enzyme (E2), with these motifs including HECT, RING finger, U-box, and PHD finger domains (30). The SCF complex consists of Skp1 (adaptor subunit), Cul1 (scaffold subunit), an F-box protein (substrate recognition subunit), and Rbx1 (also known as Roc1 or Hrt1; RING finger-containing subunit). Whereas Skp1, Cul1, and Rbx1 are common to all SCF complexes, the F-box protein is variable (with ∼70 such proteins having been identified in humans) and confers substrate specificity.Fbxo45 is an F-box protein that was originally isolated as an estrogen-induced protein (47). Human and mouse Fbxo45 genes comprise three exons and possess several consensus binding sequences for the estrogen receptor in the promoter region. Fbxo45 mRNA is rapidly induced on exposure of MCF-7 cells to 17β-estradiol (47). FSN-1, the Caenorhabditis elegans ortholog of Fbxo45, binds to RPM-1 (regulator of presynaptic morphology 1) together with CUL-1 and SKR-1, the C. elegans orthologs of mammalian Cul1 and Skp1, respectively (21, 46). RPM-1 belongs to an evolutionarily conserved family of proteins (the PHR family) that include Highwire (HIW) (Drosophila melanogaster), Esrom (Danio rerio), Phr1 (Mus musculus), and protein associated with Myc (PAM) (Homo sapiens), each of which contains a RING-finger domain that is required for its E3 activity (7, 20, 21, 27, 44). Complete loss of function of fsn-1 in C. elegans results in defects that are characterized by the simultaneous presence of overdeveloped and underdeveloped neuromuscular junctions (NMJs) and which are similar to, but not as pronounced as, those observed in rpm-1/ mutants. These genetic findings support the notion that the functions of FSN-1 and RPM-1 are partially overlapping (21).Although PHR family members interact with many potential targets (11, 24, 26, 31), genetic data have shown that one key substrate of RPM-1 and HIW is the mitogen-activated protein kinase kinase kinase known as DLK (dual leucine zipper kinase) in C. elegans and known as Wallenda in D. melanogaster, respectively. The abundance of this kinase is increased in rpm-1 or hiw mutants, and synaptic defects in the mutant worms and flies are suppressed by a loss of DLK or Wallenda. Furthermore, an increase in the level of DLK or Wallenda is sufficient to phenocopy the synaptic defects of the rpm-1 or hiw mutants (5, 27). PAM has also been shown to catalyze the ubiquitylation of tuberin (TSC2) and to regulate signaling by mTOR (mammalian target of rapamycin) in human cells (12).To elucidate the physiological functions of Fbxo45 in mammals, we have now generated mice deficient in this protein. Analysis of the mutant mice revealed that Fbxo45 is required for normal neuromuscular synaptogenesis, axon pathfinding, and neuronal migration. Moreover, we found that Fbxo45 does not form an authentic SCF complex as a result of an amino acid substitution in the F-box domain, and we identified PAM as a binding partner of Fbxo45. The phenotype of Fbxo45/ mice was found to be similar to that of Phr1/ mice, especially with regard to the defects of neuromuscular synapse formation and of axon navigation. Our results indicate that three fundamental processes of neural development— axonal projection, synapse formation, and neuronal migration—may be linked by a common machinery consisting of the Fbxo45-Phr1 complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号