首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   756篇
  免费   32篇
  2023年   1篇
  2022年   8篇
  2021年   10篇
  2020年   7篇
  2019年   13篇
  2018年   16篇
  2017年   5篇
  2016年   25篇
  2015年   38篇
  2014年   42篇
  2013年   37篇
  2012年   62篇
  2011年   68篇
  2010年   31篇
  2009年   26篇
  2008年   43篇
  2007年   46篇
  2006年   40篇
  2005年   49篇
  2004年   41篇
  2003年   45篇
  2002年   44篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   8篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有788条查询结果,搜索用时 31 毫秒
141.
The aim of this study was to investigate the role of insulin receptor substrate-2 (IRS-2) mediated signal in macrophages on the accumulation of macrophages in the vascular wall. Mice transplanted with IRS-2−/− bone marrow, a model of myeloid cell restricted defect of IRS-2, showed accumulation of monocyte chemoattractant protein-1-expressing macrophages in the vascular wall. Experiments using cultured peritoneal macrophages showed that IRS-2-mediated signal pathway stimulated by physiological concentrations of insulin, not by IL-4, contributed to the suppression of monocyte chemoattractant protein-1 expression induced by lipopolysaccharide. Our data indicated that IRS-2 deficiency in macrophages enhanced their accumulation in the vascular wall accompanied by increased expression of proinflammatory mediators in macrophages. These results suggest a role for insulin resistance in macrophages in early atherosclerogenesis.  相似文献   
142.
Fukunishi H  Yagi H  Kamijo K  Shimada J 《Biochemistry》2011,50(39):8302-8310
The cytochrome P450 enzyme engineered for enhancement of vitamin D(3) (VD(3)) hydroxylation activity, Vdh-K1, includes four mutations (T70R, V156L, E216M, and E384R) compared to the wild-type enzyme. Plausible roles for V156L, E216M, and E384R have been suggested by crystal structure analysis (Protein Data Bank 3A50 ), but the role of T70R, which is located at the entrance of the substrate access channel, remained unclear. In this study, the role of the T70R mutation was investigated by using computational approaches. Molecular dynamics (MD) simulations and steered molecular dynamics (SMD) simulations were performed, and differences between R70 and T70 were compared in terms of structural change, binding free energy change (PMF), and interaction force between the enzyme and substrate. MD simulations revealed that R70 forms a salt bridge with D42 and the salt bridge affects the locations and the conformations of VD(3) in the bound state. SMD simulations revealed that the salt bridge tends to be formed strongly when VD(3) passes through the binding pocket. PMFs showed that the T70R mutation leads to energetic stabilization of enzyme-VD(3) binding in the region near the heme active site. Interestingly, these results concluded that the D42-R70 salt bridge at the entrance of the substrate access channel affects the region near the heme active site where the hydroxylation of VD(3) occurs; i.e., it is thought that the T70R mutation plays an important role in enhancing VD(3) hydroxylation activity. A significant future challenge is to compare the hydroxylation activities of R70 and T70 directly by a quantum chemical calculation, and three-dimensional coordinates of the enzyme and VD(3) obtained from MD and SMD simulations will be available for the future challenge.  相似文献   
143.
Two ent-rosane- (cuzcol, 1 and 6-dehydroxycuzcol, 2) and a abietatriene- (salvadoriol, 3) type diterpenoids have been isolated from Maytenus cuzcoina and Crossopetalum uragoga, respectively, along with five known diterpene compounds (4-8). Their stereostructures have been elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, and computational data. The absolute configuration of cuzcol was determined by application of Riguera ester procedure. This is the first instance of isolation of ent-rosane diterpenoids from species of the Celastraceae. The isolated diterpenes were found to be potent anti-tumour-promoter agents, and carnosol (7) also showed a remarkable chemopreventive effect in an in vivo two-stage carcinogenesis model.  相似文献   
144.
The mechanisms that govern receptor coalescence into functional clusters--often a critical step in their stimulation by ligand--are poorly understood. We used single-molecule tracking to investigate the dynamics of CD36, a clustering-responsive receptor that mediates oxidized LDL uptake by macrophages. We found that CD36 motion in the membrane was spatially structured by the cortical cytoskeleton. A subpopulation of receptors diffused within linear confinement regions whose unique geometry simultaneously facilitated freedom of movement along one axis while increasing the effective receptor density. Co-confinement within troughs enhanced the probability of collisions between unligated receptors and promoted their clustering. Cytoskeleton perturbations that inhibited diffusion in linear confinement regions reduced receptor clustering in the absence of ligand and, following ligand addition, suppressed CD36-mediated signaling and internalization. These observations demonstrate a role for the cytoskeleton in controlling signal transduction by structuring receptor diffusion within membrane regions that increase their collision frequency.  相似文献   
145.
We previously identified glucose-6-phosphate dehydrogenase (G6PD) as a regulator of vascular smooth muscle contraction. In this study, we tested our hypothesis that G6PD activated by KCl via a phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-protein kinase C (PKC) pathway increases vascular smooth muscle contraction and that inhibition of G6PD relaxes smooth muscle by decreasing intracellular Ca(2+) ([Ca(2+)](i)) and Ca(2+) sensitivity to the myofilament. Here we show that G6PD is activated by membrane depolarization via PKC and PTEN pathway and that G6PD inhibition decreases intracellular free calcium ([Ca(2+)](i)) in vascular smooth muscle cells and thus arterial contractility. In bovine coronary artery (CA), KCl (30 mmol/l) increased PKC activity and doubled G6PD V(max) without affecting K(m). KCl-induced PKC and G6PD activation was inhibited by bisperoxo(pyridine-2-carboxyl)oxovanadate (Bpv; 10 μmol/l), a PTEN inhibitor, which also inhibited (P < 0.05) KCl-induced CA contraction. The G6PD blockers 6-aminonicotinamide (6AN; 1 mmol/l) and epiandrosterone (EPI; 100 μmol/l) inhibited KCl-induced increases in G6PD activity, [Ca(2+)](i), Ca(2+)-dependent myosin light chain (MLC) phosphorylation, and contraction. Relaxation of precontracted CA by 6AN and EPI was not blocked by calnoxin (10 μmol/l), a plasma membrane Ca(2+) ATPase inhibitor or by lowering extracellular Na(+), which inhibits the Na(+)/Ca(2+) exchanger (NCX), but cyclopiazonic acid (200 μmol/l), a sarcoplasmic reticulum Ca(2+) ATPase inhibitor, reduced (P < 0.05) 6AN- and EPI-induced relaxation. 6AN also attenuated phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Ser855, a site phosphorylated by Rho kinase, inhibition of which reduced (P < 0.05) KCl-induced CA contraction and 6AN-induced relaxation. By contrast, 6AN increased (P < 0.05) vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239, indicating that inhibition of G6PD increases PKA or PKG activity. Inhibition of PKG by RT-8-Br-PET-cGMPs (100 nmol/l) diminished 6AN-evoked VASP phosphorylation (P < 0.05), but RT-8-Br-PET-cGMPs increased 6AN-induced relaxation. These findings suggest G6PD inhibition relaxes CA by decreasing Ca(2+) influx, increasing Ca(2+) sequestration, and inhibiting Rho kinase but not by increasing Ca(2+) extrusion or activating PKG.  相似文献   
146.
Geissoschizine methyl ether (GM) in Uncaria hook, a galenical constituent of yokukansan is thought to be one of active components in the psychotropic effect of yokukansan, a traditional Japanese medicine (kampo medicine). However, there is no data on the blood–brain barrier (BBB) permeability of Uncaria hook-derived alkaloids containing GM. In this study, we investigated the BBB permeability of seven Uncaria hook alkaloids (GM, isocorynoxeine, isorhynchophylline, hirsuteine, hirsutine, rhynchophylline, and corynoxeine) using in vivo and in vitro methods. In the in vivo experiment, seven alkaloids in the plasma and brain of rats orally administered with yokukansan were measured by liquid chromatography–mass spectroscopy/mass spectrometric multiple reaction monitoring assay. In the in vitro experiment, the BBB permeability of seven alkaloids were examined using the BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes. In the in vivo study, six components containing GM but not isocorynoxeine were detected in the plasma, and three (GM, hirsuteine, and corynoxeine) of components were detected in the brain. The in vitro BBB permeability data indicated that seven alkaloids were able to cross brain endothelial cells in culture conditions and that the BBB permeability of GM was higher than those of the other six alkaloids. These results suggest that target ingredient GM in yokukansan administered orally is absorbed into the blood and then reaches the brain through the BBB. This evidence further supports the possibility that GM is an active component in the psychotropic effect of yokukansan.  相似文献   
147.
In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.  相似文献   
148.
One of the future goals in ligament reconstruction is to prevent graft deterioration after transplantation. The aim of this study is to clarify whether an administration of TGF-beta1 and EGF significantly affect biomechanical properties of the in situ frozen-thawed anterior cruciate ligament (ACL), an ACL autograft model, and to elucidate whether the timing of this administration may influence its effect. Rabbits were randomly divided into 4 groups after the freeze-thaw treatment with liquid nitrogen was applied to the right knee. In 2 groups, 4-ng TGF-beta1 and 100-ng EGF mixed with 0.2-ml fibrin sealant were applied around the ACL at 3 and 6 weeks after the treatment, respectively. In the remaining two groups, only 0.2-ml fibrin sealant was applied around the ACL at 3 and 6 weeks, respectively. In each group, all animals were sacrificed at 12 weeks after the freeze-thaw treatment. These growth factors applied at 3 weeks significantly inhibited not only the increase of water content and the cross-sectional area of the ACL but also reduction of the tensile strength and the tangent modulus of the ACL (p<0.0001), which were induced by the freeze-thaw treatment. However, the application at 6 weeks did not significantly affect the changes of these parameters after the treatment. This study demonstrated that the timing of administration of TGF-beta and EGF after the freeze-thaw treatment significantly influences its effect on the biomechanical properties of the frozen-thawed ACL.  相似文献   
149.
In the present study, we attempted to improve the production of recombinant horseradish peroxidase C1a (HRP-C1a; a heme-binding protein) by Cryptococcus sp. S-2. Both native and codon-optimized HRP-C1a genes were expressed under the control of a high-level expression promoter. When the HRP-C1a gene with native codons was expressed, poly(A) tails tended to be added within the coding region, producing truncated messenger RNAs (mRNAs) that lacked the 3′ ends. Codon optimization prevented polyadenylation within the coding region and increased both the mRNA and protein levels of active HRP-C1a. To improve secretion of the recombinant protein, we tested five types of N-terminal signal peptide (NTP). These included the native HRP-C1a NTP (C1a-NTP), short and long xylanase secretion signals (X1-NTP and X2-NTP), cutinase signal (C-NTP), and amylase signal (A-NTP), with and without a C-terminal propeptide (CTP). X2-NTP without CTP resulted in the highest HRP-C1a secretion into the culture medium. HRP-C1a secretion was further increased by using xylose fed-batch fermentation. The production of HRP-C1a in this study was 2.7 and 15 times higher than the production reported in previous studies that used insect cell and Pichia expression systems, respectively.  相似文献   
150.
We investigated the effect of adding an alkaline material (containing calcium carbonate and gypsum) on the immobilization of heavy metals (Cd, Cu, Pb, and Zn) in a paddy soil slightly contaminated with Cd and Zn under flooded and non-flooded conditions in the laboratory. Adding the alkaline material increased the soil pH and significantly decreased the exchangeable fraction of all of the metals, especially for Cd (>75% decrease) and Zn (ca. 90% decrease), under both flooded and non-flooded conditions. Drying the flooded soil samples increased the ratio of exchangeable fraction to the total fraction, particularly for Cd. The exchangeable fraction ratio was lower in the dried, previously flooded samples that contained the alkaline material than in the samples that did not contain the alkaline material, indicating that adding the alkaline material would be an effective way of immobilizing heavy metals during the oxidation of anoxic soils. These results show that the alkaline material can be used to immobilize heavy metals under both anoxic and oxic conditions, and that the effects of flooding and amending a paddy soil with alkaline material on the chemical forms will be different between heavy metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号