首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   7篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   38篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   11篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   2篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
71.
Summary Bacillus amyloliquefaciens 321S cells were immobilized with 3.4% -carrageenan gel in bead form, and -amylase production by the immobilized cells was studied. Cells in the gel, after the population reached maximum were restricted to a layer of 50 m thickness, from the surface of the gel, suggesting that oxygen diffusion is the growth limiting factor. The specific respiratory activity and the growth rate of the entrapped cells under such conditions were 1/2 and 1/5 1/10, respectively, that of free cells. In spite of the repressed respiration and growth, the specific rate of -amylase production of the entrapped cells reached the maximum value of free cells or higher.In continuous culture, in an aerated vessel with a volume ratio of gel beads to medium of 1:2, the maximum production rate of -amylase was obtained at a dilution rate of 1.0 h–1, which was double the maximum specific growth rate of the strain.These results showed that bacterial -amylase production, which is a nongrowth-associated type of synthesis was achieved with the use of immobilized cells.  相似文献   
72.
73.
DNA-dependent RNA polymerase I(A) in cauliflower inflorescenceis exclusively solubilised when the tissue is homogenized withTGMED-buffer (50 mM Tris-HCl pH 8.0, 5 mM MgCl2 0.1 mM EDTA,1 mM dithiothreitol, 25% glycerol) containing 0.6 M (NH4)2SO4and 20% Polyclar-AT (polyvinypyrrolidone). (Received April 19, 1977; )  相似文献   
74.
This study examined the effect of triterpenoid on the salt tolerance of lanosterol synthase deficient yeast mutant GIL77. The expression of the triterpenoid synthase gene under GAL1 promoter in GIL77 increased the triterpenoid concentration of both whole cell and plasma membrane fractions. Without the induction of the genes, the growth curve of BgbAS or RsM1 transformant depicted patterns similar to control cells in both the presence and absence of salt with growth inhibition at 500 mM NaCl. The induction of BgbAS and RsM1 gene expression slightly repressed growth compared with control cells in the absence of NaCl. The growth of GIL77 was significantly suppressed by the expression of BgbAS or RsM1 under salinity conditions. Of the triterpenoid synthase genes, BgbAS rather than RsM1 was found to strongly inhibit the growth of GIL77 cells under salt stressed conditions. The expression of the triterpenoid synthase gene in GIL77 also influenced their tolerance to other abiotic stresses. In contrast to the endogenous synthesis, the exogenous supply of triterpenoid in the culture medium appeared to occur in the plasma membrane fraction and enhanced the salt tolerance of GIL77. This study thus discussed the physiological significance of triterpenoid in relation to its possible role in modulating salt tolerance.  相似文献   
75.
Tolaasins are antimicrobial lipodepsipeptides. Here, we report the tolaasins-detoxifying properties of Microbacterium sp. K3-5 (K3-5). The detoxification of tolaasins by K3-5 was performed by hydrolyzation of cyclic structure of tolaasins depending on the tolaasin-K3-5 cell interaction. Our data suggest that the cyclic structure of tolaasins is critical for its interaction to target cells.  相似文献   
76.
The reaction products from L-tryptophan treated with nitrite under acidic conditions were investigated for mutagenic activity with the Salmonella typhimurium his reversion assay and for DNA-damaging activity using the rec-assay. The diethyl ether extract of the reaction mixture showed 8 spots on thin-layer chromatography (TLC). One compound from the TLC had high mutagenic activity for TA98 without S9 mix, with little DNA-damaging activity. The mutagen was purified and identified by instrumental analysis as 2-hydroxy-(1-N-nitrosoindole)propionic acid (NIHP). The mutagenic activity of NIHP was determined by the induced mutation frequency method; the induced mutation frequency was about 19.2 X 10(-5) at a dose level of 160 micrograms/plate.  相似文献   
77.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   
78.
Small-angle X-ray scattering of one high molecular weight (HMW) subunit of wheat glutenin was measured at protein concentration ranges from 1.0 to 10.0 mg/ml. The radius of gyration of whole particles, RO, in aq. 50% (v/v) 1-propanol and 0.1M acetic acid was 16.6 +/- 0.1nm and 22.8nm, respectively, and the corresponding radius of gyration of the cross-section, RC, was 2.82 +/- 0.02 nm and 2.23 +/- 0.01 nm, which indicate that the glutenin HMW subunit exists as very anisotropic particles in both solutions. The RO and RC values of the subunit, and the drastic decrease in scattered intensity at small angles that occurs in the acetic acid solution with relatively low protein concentration are completely explained in terms of rod-like molecules of the glutenin HMW subunit.  相似文献   
79.
An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi‐crystalline and amorphous, can be monitored directly and in real‐time by an enzyme‐modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross‐linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current of the reduced mediator, hydroquinone, produced by the CDH‐catalyzed reaction with cellobiose, was recorded under constant‐potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH‐biosensors showed high sensitivity (87.7 µA mM?1 cm?2), low detection limit (25 nM), and fast response time (t95% ~ 3 s) and this provided experimental access to the transient kinetics of cellobiohydrolases acting on insoluble cellulose. The response from the CDH‐biosensor during enzymatic hydrolysis was corrected for the specificity of PcCDH for the β‐anomer of cello‐oligosaccharides and the approach were validated against HPLC. It is suggested that quantitative, real‐time data on pure insoluble cellulose substrates will be useful in attempts to probe the molecular mechanism underlying enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2012; 109: 3199–3204. © 2012 Wiley Periodicals, Inc.  相似文献   
80.
By extraction of wheat flour with sodium dodecyl sulfate (SDS) solution at pH 6.8, about 76% of the total flour nitrogen solubilized into clear supernatant. This solvent was more effective for extraction of wheat protein than 0.01 m acetic acid, aluminium lactate-lactic acid buffer (pH 3.1), AUC-solvent (0.1 m acetic acid, 3 m urea and 0.01 m cetyltrimethyl-ammomum bromide) and 3,5-diiodosalicylic acid lithium salt etc. The molecular weight distribution of the SDS-soluble proteins was studied by SDS-polyacrylamide gel electrophoresis and by molecular sieve chromatography on controlled pore glass (CPG–10–500) without prior reduction of disulfide linkages of the proteins. Most of the SDS-soluble proteins had molecular weight of less than 75,000, suggesting single-chained proteins. A small amount of relatively high molecular weight proteins which contained intermolecular disulfide linkages was also detected in the gel of electrophoresis, while high molecular weight protein which did not migrate into gel matrix during electrophoresis without prior reduction of disulfide linkages existed in trace amount in the SDS-soluble fraction.

The SDS-insoluble proteins were almost completely extracted by further extraction with SDS in combination with 2-mercaptoethanol or with mercuric chloride.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号