首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   16篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   11篇
  2007年   6篇
  2006年   11篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
21.
X-irradiation of mice decreased the decay rate of the in vivo ESR signal in the head region to 75% of the control when 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCPROXYL), a lipophilic and blood-brain barrier-permeable spin probe, was used. We attempted to identify the specific factor responsible for the decrease in the signal decay rate caused by X-irradiation. The signal decay of MCPROXYL in the head region depends on the following three factors: (1) blood concentration of MCPROXYL, (2) reduction to the corresponding hydroxylamine in the brain tissue, and (3) effusion of MCPROXYL from the brain tissue. Irradiation at 15 Gy did not significantly change the rate of decrease of blood concentration of MCPROXYL at 1 h post-irradiation. The reducing activity of the brain homogenate was not changed by the X-irradiation (15 Gy). The contents of MCPROXYL and its hydroxylamine derivative in the brain of 15 Gy-irradiated mice remained higher than in non-irradiated mice. These findings suggest that the effect of X-irradiation observed by in vivo ESR is attributable not to the redox reaction of MCPROXYL in the brain but to the change of the efflux rate of the MCPROXYL from the brain.  相似文献   
22.
In the history of phytopathology, microbial toxins have been the objects of extensive studies as possible pathogenicity or virulence factors for the producer pathogens. The recent development of molecular genetic techniques provided an experimental basis to thoroughly test the role of these secondary metabolites in pathogenesis. Some of them did prove to be highly associated with disease initiation or enhanced virulence in certain plant-pathogen interactions. In this review, we describe recent progresses in the field of plant-pathogen interactions focusing on two toxins; i.e., tabtoxin from Pseudomonas syringae and trichothecenes from Fusarium and other fungi. These microbial toxins have convincingly been shown to play causal roles in plant disease development. Studies on the biosynthesis and resistance mechanisms of these producers are outlined, and the significance of this knowledge is discussed in relation to practical applications in agriculture.  相似文献   
23.
Two human CC chemokines, SLC/6Ckine/Exodus2/TCA4 and CKbeta-11/MIP-3beta/ELC, are previously reported as efficacious chemoattractants for T- and B-cells and dendritic cells. SLC and CKbeta-11 share only 32% amino acid identity, but are ligands for the same chemokine receptor, CCR7. In this study, we examined chemotactic activity of SLC and CKbeta-11 for NK cells and lymphoid progenitors in bone marrow and thymus. It was found that these two CCR7 ligands are chemoattractants for neonatal cord blood and adult peripheral blood NK cells and cell lines. SLC and CKbeta-11 preferentially attract the CD56(+)CD16(-) NK cell subset over CD56(+)CD16(+) NK cells. SLC and CKbeta-11 also demonstrate selective chemotactic activity on late stage CD34(-)CD19(+)IgM- B-cell progenitors and CD4(+) and CD8(+) single-positive thymocytes, but not early stage progenitors. It was noted that SLC is an efficient desensitizer of CKbeta-11-dependent NK cell chemotaxis, while CKbeta-11 is a weak desensitizer of SLC-dependent chemotaxis. Taken together, these results suggest that SLC and CKbeta-11 have the potential to control trafficking of NK cell subsets and late stage lymphoid progenitors in bone marrow and thymus.  相似文献   
24.
Measurement of hydroxyl radical (*OH) in living animals irradiated with ionizing radiation should be required to clarify the mechanisms of radiation injury and the in vivo assessment of radiation protectors, because generation of *OH is believed to be one of the major triggers of radiation injury. In this study, *OH generation was monitored by spin trapping the secondary methyl radical formed by the reaction of *OH with dimethyl sulfoxide (DMSO). Rats were injected intraperitoneally with a DMSO solution of alpha-phenyl-N-tert-butylnitrone (PBN). X-irradiation of the rats remarkedly increased the six-line EPR signal in the bile. The strengthened signal was detectable above 40 Gy. Use of 13C-substituted DMSO revealed that the signal included the methyl radical adduct of PBN as a major component. The EPR signal of the PBN-methyl radical adduct was completely suppressed by preadministration of methyl gallate, a scavenger of *OH but not of methyl radical. Methyl gallate did not reduce the spin adducts to EPR-silent forms. These observations indicate that what we were measuring was *OH generated in vivo by x-irradiation. This is the first report of the in vivo monitoring of *OH generation at a radiation dose close to what people might receive in the case of radiological accident or radiation therapy.  相似文献   
25.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   
26.
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.  相似文献   
27.
Rhodococcus rhodochrous S-2 produces extracellular polysaccharides (S-2 EPS) containing D-glucose, D-galactose, D-mannose, D-glucuronic acid, and lipids, which is important to the tolerance of this strain to an aromatic fraction of (AF) Arabian light crude oil (N. Iwabuchi, N. Sunairi, H. Anzai, M. Nakajima, and S. Harayama, Appl. Environ. Microbiol. 66:5073-5077, 2000). In the present study, we examined the effects of S-2 EPS on the growth of indigenous marine bacteria on AF. Indigenous bacteria did not grow significantly in seawater containing AF even when nitrogen, phosphorus, and iron nutrients were supplemented. The addition of S-2 EPS to seawater containing nutrients and AF resulted in the emulsification of AF, promotion of the growth of indigenous bacteria, and enhancement of the degradation of AF by the bacteria. PCR-denaturing gradient gel electrophoresis analyses show that addition of S-2 EPS to the seawater containing nutrients and AF changed the composition of the bacterial populations in the seawater and that bacteria closely related to the genus Cycloclasticus became the major population. These results suggest that Cycloclasticus was responsible for the degradation of hydrocarbons in AF. The effects of 15 synthetic surfactants on the degradation of AF by indigenous marine bacteria were also examined, but enhancement of the degradation of AF was not significant. S-2 EPS was hence the most effective of the surfactants tested in promoting the biodegradation of AF and may thus be an attractive agent to use in the bioremediation of oil-contaminated marine environments.  相似文献   
28.
The effect of the chemical structure of nitroxyl spin probes on the rate at which ESR signals are lost in the presence of reactive oxygen species (ROS) was examined. When the spin probes were reacted with either hydroxyl radical (.OH) or superoxide anion radical (O(2)(.-)) in the presence of cysteine or NADH, the probes lost ESR signal depending on both their ring structure and substituents. Pyrrolidine nitroxyl probes were relatively resistant to the signal decay caused by O(2)(.-) with cysteine/NADH. Signal decay rates for these reactions correlated with reported redox potentials of the nitroxyl/oxoammonium couple of spin probes, suggesting that the signal decay mechanism in both cases involves the oxidation of a nitroxyl group. The apparent rate constants of the reactions between the spin probe and .OH and between the spin probe and O(2)(.-) in the presence of cysteine were estimated using mannitol and superoxide dismutase (SOD), respectively, as competitive standards. The rate constants for spin probes and .OH were in the order of 10(9) M(-1) s(-1), much higher than those for the probes and O(2)(.-) in the presence of cysteine (10(3)-10(4) M(-1) s(-1)). These basic data are useful for the measurement of .OH and O(2)(.-) in living animals by in vivo ESR spectroscopy.  相似文献   
29.
The aim of this study was to quantify the hydroxyl radicals (*OH) produced when aqueous solutions are decomposed by high-linear energy transfer (LET) 290 MeV/nucleon carbon-ion beams using an electron spin resonance (ESR) spectrometer. Aerated cell culture medium containing 200 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was irradiated with doses of 0 to 20 Gy with an LET of 20 to 90 keV/ micro m. We were able to obtain ESR spectra 10 min after irradiation, and the formation of *OH and hydrogen atoms was confirmed by radiolysis of deuterium oxide and ethanol containing DMPO. Our results showed that the yield of *OH by carbon-ion radiolysis increased in proportion to the absorbed dose over the range of 0 to 20 Gy. Furthermore, we discovered that the yield of *OH decreased linearity as LET increased logarithmically from 20 to 90 keV/ micro m. The generation of *OH by carbon-ion radiolysis at LETs of 20, 40, 60, 80 and 90 keV/ micro m was 64, 58, 52, 49 and 50%, respectively, of that for low-LET X radiolysis. These unique findings provide a further understanding of the indirect effect of high-LET radiation.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号