首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   16篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   13篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   11篇
  2007年   6篇
  2006年   11篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1997年   2篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有241条查询结果,搜索用时 328 毫秒
11.
Thirty-eight strains of 12Microsporum and 10Arthroderma (Nannizzia) species were investigated by analysis of mitochondrial DNA with 6 restriction enzymes, and classified into 13 genetic groups. The phylogenetic tree of the 13 groups thus established was constructed. On the tree,M. audouinii, M. langeronii, M. rivalieri, M. distortum, M. equinum, M. ferrugineum andA. otae comprise one genetic group and are suggested to be the same species.A. gypseum, A. fulvum, M. duboisii, M. ripariae, A. incurvatum, A. persicolor andA. obtusum are clustered on one of five boughs of the tree indicating their close relation.A. racemosum andA. cajetani are also closely related.  相似文献   
12.
The relationships among X591, Cyt-b559 and C-550 in the primaryphotoact of PS-II were analysed by examining the effects ofvarious inhibitory substances and treatments on the light-inducedabsorbance changes of these components. The results were fully explainable by the scheme previouslypresented by Huzisige, in which two photoreactions are involvedin PS-II. Our conclusion is that X591 acts as the electron acceptorfor one of the photoreactions in PS-II. (Received October 23, 1978; )  相似文献   
13.
Upon gentle lysis of exponentially growing mouse carcinoma cells FM3A by sodium dodecyl sulfate, DNA was released as a "DNA-protein complex" in a folded conformation. No histones could be detected in the DNA-protein complex. The proteins bound to DNA were found to be composed of several kinds of nonhistone proteins with a molecular weight range of 50,000 to 60,000; they appear to play a key role in stabilizing and maintaining the compact and folded structure of the complex. Removal of the proteins by Pronase or 2-mercaptoethanol produced a more relaxed structure sedimenting about half as fast as the original complex in a neutral sucrose gradient. DNA in the folded complex is supercoiled, as indicated by the characteristic biphasic response of its sedimentation rate to increasing concentration of various intercalating agents, actinomycin D, ethidium bromide and acriflavine, with which the cells were treated before lysis. Pronase- or 2-mercaptoethanol-treated relaxed DNA still possessed the characteristic of closed-circular structure as judged from its response to intercalating agents. Nicking with gamma-ray or 4NQO broke these superhelical turns and relaxed the folded complex to slower sedimenting forms equivalent to the relaxed DNA obtained on treatment with Pronase or 2-mercaptoethanol. Viscometric observations of DNA-protein complex were consistent with the above results. A tentative model for the structure of this DNA-protein complex is proposed in which supercoiled DNA is folded into loops by several kinds of nonhistone proteins. Autoradiographic examination of the complex appeared to support this model.  相似文献   
14.
Basic amphipathic alpha-helical peptides Ac-(Leu-Ala-Arg-Leu)3 or 4-NHCH3 (4(3) or 4(4)) and H-(Leu-Ala-Arg-Leu)3-(Leu-Arg-Ala-Leu)2 or 3-OH (4(5) or 4(6)) were synthesized and studied in terms of their interactions with phospholipid membranes, biological activity, and ion channel-forming ability. CD study of the peptides showed that they form alpha-helical structures in the presence of phospholipid liposomes and thus they have amphipathic distribution of the side chains along the axis of the helix. A leakage study of carboxyfluorescein encapsulated in phospholipid vesicles indicated that the peptides possess a highly potent ability to perturb the membrane structure. Membrane current measurements using the planar lipid bilayer technique revealed that the peptide 4(6), which was long enough to span the lipid bilayer in the alpha-helical structure, formed cation-selective ion channels at a concentration of 0.5 microM in a planar diphytanoylphosphatidylcholine bilayer. In contrast, other shorter peptides failed to form discrete and stable channels though they occasionally induced an increase in the membrane current with erratic conductance levels. The probability of detecting a conductance increase was in the order of 4(6) greater than 4(5) greater than 4(4) greater than 4(3), which corresponds to the order of the peptide chain lengths. Furthermore, 4(6) but not 4(5) showed an antimicrobial activity against both Gram-positive and -negative bacteria. The structure of ion channels formed by 4(6) and the relationship between the peptide chain length and biological activity of the synthetic peptides are discussed.  相似文献   
15.
16.
The role of cAMP in regulation of intracellular pH in the confluent LLC-PK1 cells was investigated. DibutyrylcAMP and forskolin induce intracellular acidification. This acidification is inhibited by DIDS and ethacrynic acid, inhibitors of Na(+)-independent Cl-/HCO3- exchange, and by removal of extracellular Cl-. In addition, Bt2 cAMP causes Cl- entry into LLC-PK1 cells. These results suggest that cAMP activates Cl- transport, namely Na(+)-independent Cl-/HCO3- exchange, which participates in pHi regulation.  相似文献   
17.
Nishide  E.  Anzai  H.  Uchida  N.  Nisizawa  K. 《Hydrobiologia》1990,204(1):573-576
Sugar constituents of the fucose-containing polysaccharides (FCPs) from 21 species of brown algae were analyzed. FCPs were extracted with hot water (100 °C, 4 h), separated by precipitation with 20% (v:v) ethanol in the presence of 0.05 M MgCl2 to remove contaminating soluble alginate, and purified by DEAE-Sephadex column chromatography. The samples were hydrolyzed with HCI, and neutral sugar and uronic acid were separated by anion exchange chromatography. Their amounts were determined by gas-liquid chromatography. The neutral sugars in the FCPs from Ishige okamurae, Laminaria ochotensis, Myelophycus simplex, Padina arborescens and Sargassum thunbergii all contained arabinose, fucose, galactose, glucose, mannose, rhamnose and xylose residues. The FCPs from Ishige okamurae, Padina arborescens, Sargassum hemiphyllum, S. patents and S. sagamianum contained the four uronic acids, galacturonic acid, glucuronic acid, guluronic acid and mannuronic acid.  相似文献   
18.
An enzyme catalyzing the formation of an unusual C-P bond that is involved in the biosynthesis of the antibiotic bialaphos (BA) was isolated from the cell extract of a mutant (NP71) of Streptomyces hygroscopicus SF1293. This enzyme, carboxyphosphonoenolpyruvate (CPEP) phosphonomutase, was first identified as a protein lacking in a mutant (NP213) defective in one of the steps in the pathway to BA. The first 30 residues of the amino terminus of this protein were identical to those predicted by the nucleotide sequence of the gene that restored BA production to NP213. The substrate of the enzyme, a P-carboxylated derivative of phosphoenolpyruvate named CPEP, was also isolated from the broth filtrate of NP213 as a new biosynthetic intermediate of BA. CPEP phosphonomutase catalyzes the rearrangement of the carboxyphosphono group of CPEP to form the C-P bond of phosphinopyruvate.  相似文献   
19.
After fertilization, the sperm and oocyte genomes undergo extensive epigenetic reprogramming to form a totipotent zygote. The dynamic epigenetic changes during early embryo development primarily involve DNA methylation and demethylation. We have previously identified Gse (gonad-specific expression gene) to be expressed specifically in germ cells and early embryos. Its encoded protein GSE is predominantly localized in the nuclei of cells from the zygote to blastocyst stages, suggesting possible roles in the epigenetic changes occurring during early embryo development. Here, we report the involvement of GSE in epigenetic reprogramming of the paternal genome during mouse zygote development. Preferential binding of GSE to the paternal chromatin was observed from pronuclear stage 2 (PN2) onward. A knockdown of GSE by antisense RNA in oocytes produced no apparent effect on the first and second cell cycles in preimplantation embryos, but caused a significant reduction in the loss of 5-methylcytosine (5mC) and the accumulation of 5-hydroxymethylcytosine (5hmC) in the paternal pronucleus. Furthermore, DNA methylation levels in CpG sites of LINE1 transposable elements, Lemd1, Nanog and the upstream regulatory region of the Oct4 (also known as Pou5f1) gene were clearly increased in GSE-knockdown zygotes at mid-pronuclear stages (PN3-4), but the imprinted H19-differential methylated region was not affected. Importantly, DNA immunoprecipitation of 5mC and 5hmC also indicates that knockdown of GSE in zygotes resulted in a significant reduction of the conversion of 5mC to 5hmC on LINE1. Therefore, our results suggest an important role of maternal GSE for mediating active DNA demethylation in the zygote.  相似文献   
20.
Rhodococcus erythropolis PR4 is a marine bacterium that can degrade various alkanes including pristane, a C(19) branched alkane. This strain produces a large quantity of extracellular polysaccharides, which are assumed to play an important role in the hydrocarbon tolerance of this bacterium. The strain produced two acidic extracellular polysaccharides, FR1 and FR2, and the latter showed emulsifying activity toward clove oil, whereas the former did not. FR2 was composed of D-galactose, D-glucose, D-mannose, D-glucuronic acid, and pyruvic acid at a molar ratio of 1:1:1:1:1, and contained 2.9% (w/w) stearic acid and 4.3% (w/w) palmitic acid attached via ester bonds. Therefore, we designated FR2 as a PR4 fatty acid-containing extracellular polysaccharide or FACEPS. The chemical structure of the PR4 FACEPS polysaccharide chain was determined by 1D (1)H and (13)C NMR spectroscopies as well as by 2D DQF-COSY, TOCSY, HMQC, HMBC, and NOESY experiments. The sugar chain of PR4 FACEPS was shown to consist of tetrasaccharide repeating units having the following structure: [structure: see text].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号