首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13775篇
  免费   706篇
  国内免费   8篇
  14489篇
  2023年   27篇
  2022年   65篇
  2021年   115篇
  2020年   59篇
  2019年   86篇
  2018年   139篇
  2017年   145篇
  2016年   248篇
  2015年   378篇
  2014年   433篇
  2013年   1143篇
  2012年   768篇
  2011年   827篇
  2010年   484篇
  2009年   462篇
  2008年   779篇
  2007年   869篇
  2006年   854篇
  2005年   890篇
  2004年   973篇
  2003年   908篇
  2002年   859篇
  2001年   140篇
  2000年   98篇
  1999年   148篇
  1998年   220篇
  1997年   206篇
  1996年   170篇
  1995年   146篇
  1994年   115篇
  1993年   153篇
  1992年   127篇
  1991年   94篇
  1990年   91篇
  1989年   90篇
  1988年   86篇
  1987年   66篇
  1986年   73篇
  1985年   86篇
  1984年   100篇
  1983年   87篇
  1982年   106篇
  1981年   95篇
  1980年   84篇
  1979年   41篇
  1978年   47篇
  1977年   44篇
  1976年   51篇
  1974年   37篇
  1973年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Desmosomal cadherins are essential cell adhesion molecules expressed in the epidermis. We identified a mutation of a cadherin superfamily member, namely, desmoglein 4 (Dsg4), in early onset of death (EOD)( hage ) mice with hypotrichosis. The mutation was induced by the insertion of an early transposon II-beta into intron 8 of Dsg4. Mast cell hyperplasia was observed in the skin of EOD( hage ) mice. The abnormally expanded population of lpr T cells, i.e., CD4(-)CD8(-)B220(+)Thy1.2(+) alphabetaT cells, in the splenocytes of EOD mice was reduced in EOD( hage ) mice. Therefore, it was suspected that the long-living mutant EOD( hage ) mice were selected from lupus-prone EOD mice because of their immunological immaturity. These findings clearly indicate that Dsg4 is an important molecule for the formation of hair follicles and hypothesize that unorganized hyperplastic hair follicles in anagen due to the Dsg4 mutation provide niches for mast cell precursors in the skin.  相似文献   
962.
Recombination is essential for the recovery of stalled/collapsed replication forks and therefore for the maintenance of genomic stability. The situation becomes critical when the replication fork collides with an unrepaired single-strand break and converts it into a one-ended double-strand break. We show in fission yeast that a unique broken replication fork requires the homologous recombination (HR) enzymes for cell viability. Two structure-specific heterodimeric endonucleases participate in two different resolution pathways. Mus81/Eme1 is essential when the sister chromatid is used for repair; conversely, Swi9/Swi10 is essential when an ectopic sequence is used for repair. Consequently, the utilization of these two HR modes of resolution mainly relies on the ratio of unique and repeated sequences present in various eukaryotic genomes. We also provide molecular evidence for sister recombination intermediates. These findings demonstrate that Mus81/Eme1 is the dedicated endonuclease that resolves sister chromatid recombination intermediates during the repair of broken replication forks.  相似文献   
963.
Enzymatic ligation methods are useful in the diagnostic detection of DNA sequences. Here, we describe the investigation of nonenzymatic phosphorothioate--iodoacetyl DNA chemical ligation as a method for the detection and identification of RNA and DNA. The specificity of ligation on the DNA target is shown to allow the discrimination of a single point mutation with a drop in the ligation yield of up to 16.1-fold. Although enzymatic ligation has very low activity for RNA targets, this reaction is very efficient for RNA targets. The speed of the chemical ligation with an RNA target achieves a 70% yield in 5 s, which is equal to or better than that of ligase-enzyme-mediated ligation with a DNA target. The reaction also exhibits a significant level of signal amplification under thermal cycling in periods as short as 100-120 min, with the RNA or DNA target acting in a catalytic way to ligate multiple pairs of probes.  相似文献   
964.
965.
Fission yeast Swi5 protein, a novel DNA recombination mediator   总被引:2,自引:0,他引:2  
The Schizosaccharomyces pombe Swi5 protein forms two distinct protein complexes, Swi5-Sfr1 and Swi5-Swi2, each of which plays an important role in the related but functionally distinct processes of homologous recombination and mating-type switching, respectively. The Swi5-Sfr1 mediator complex has been shown to associate with the two RecA-like recombinases, Rhp51 (spRad51) and Dmc1, and to stimulate in vitro DNA strand exchange reactions mediated by these proteins. Genetic analysis indicates that Swi5-Sfr1 works independently of another mediator complex, Rhp55-Rhp57, during Rhp51-dependent recombinational repair. In addition, mutations affecting the two mediators generate distinct repair spectra of HO endonuclease-induced DNA double strand breaks, suggesting that these recombination mediators differently regulate recombination outcomes in an independent manner.  相似文献   
966.
967.

Background  

Quantification of the transmission dynamics of smallpox is crucial for optimizing intervention strategies in the event of a bioterrorist attack. This article reviews basic methods and findings in mathematical and statistical studies of smallpox which estimate key transmission parameters from historical data.  相似文献   
968.
The extracellular signal-regulated kinase (ERK) cascade has been shown to be a key modulator of pain processing in the central nucleus of the amygdala (CeA) in mice. ERK is activated in the CeA during persistent inflammatory pain and this activation is both necessary and sufficient to induce peripheral tactile hypersensitivity. Interestingly, biochemical studies show that inflammation-induced ERK activation in the CeA only occurs in the right, but not the left hemisphere. This inflammation-induced ERK activation in the right CeA is independent of the side of peripheral inflammation, suggesting that there is a dominant role of the right hemisphere in the modulation of pain by ERK activation in the CeA. However, the functional significance of this biochemical lateralization has yet to be determined. In the present study, we tested the hypothesis that modulation of pain by ERK signaling in the CeA is functionally lateralized. We acutely blocked ERK activation in the CeA by infusing the MEK inhibitor U0126 into the right or the left hemisphere and then measured the behavioral effects on inflammation-induced mechanical hypersensitivity in mice. Our results show that blockade of ERK activation in the right, but not the left CeA, decreases inflammation-induced peripheral hypersensitivity independent of the side of peripheral injury. These findings demonstrate that modulation of pain by ERK signaling in the CeA is functionally lateralized to the right hemisphere, suggesting a dominant role of the right amygdala in pain processing.  相似文献   
969.
The extracellular signal-regulated kinase (Erk) activity contributes to synaptic plasticity, a key mechanism for learning, memory and chronic pain. Although the anterior cingulate cortex (ACC) has been reported as an important cortical region for neuronal mechanisms underlying the induction and expression of chronic pain, it has yet to be investigated whether or not Erk activity in the ACC may be affected by peripheral injury or in chronic pain state. In the present study, we use adult rat animal models of inflammatory and neuropathic pain and demonstrate that Erk signaling pathway in the ACC is potently activated after peripheral tissue or nerve injury. Furthermore, we demonstrate that mechanical allodynia significantly activated Erk activity at synaptic sites at two weeks after the injury. We propose a synaptic model for explaining the roles of Erk activity during different phases of chronic pain. Our findings suggest that cortical activation of Erk may contribute to both induction and expression of chronic pain.  相似文献   
970.
Pseudomonas sp. MX‐058 produces aldehyde oxidase catalysing glyoxal to glyoxylic acid. Two aldehyde oxidases (F10 and F13) were purified to homogeneity from Pseudomonas sp. MX‐058. F10 and F13 had subunit structures, a heterotetramer and heteropentamer respectively. The N‐terminal amino acid sequences of all subunits were highly homologous to amino acid sequences of the putative oxidoreductases of Pseudomonas strains. All of these homologous oxidoreductases have a heterotrimer structure consisting of 85‐88 (α), 37‐39 (β) and 18‐23 (γ) kDa subunits. However, the α‐subunits of F10 and F13 might have decomposed into two [80 (α1) and 9 kDa (α2)] and three [58 (α1′), 22 (α1″) and 9 (α2) kDa] subunits, respectively, while the β‐ and γ‐subunits remained intact. Both F10 and F13 show high activity toward several aliphatic and aromatic aldehydes. The aldehyde oxidases of Pseudomonas sp. MX‐058 has unique protein structures, α1α2βγ for F10 and α1′α1″α2βγ for F13, a heterotetramer and heteropentamer respectively. The enzymes exhibit significantly low activity toward glyoxylic acid compared with glyoxal, which is an advantageous property for glyoxylic acid production from glyoxal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号