首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13959篇
  免费   702篇
  国内免费   8篇
  2022年   60篇
  2021年   117篇
  2020年   58篇
  2019年   86篇
  2018年   141篇
  2017年   146篇
  2016年   248篇
  2015年   378篇
  2014年   440篇
  2013年   1150篇
  2012年   775篇
  2011年   833篇
  2010年   486篇
  2009年   466篇
  2008年   787篇
  2007年   876篇
  2006年   865篇
  2005年   902篇
  2004年   988篇
  2003年   916篇
  2002年   874篇
  2001年   147篇
  2000年   104篇
  1999年   156篇
  1998年   224篇
  1997年   213篇
  1996年   177篇
  1995年   149篇
  1994年   115篇
  1993年   154篇
  1992年   129篇
  1991年   95篇
  1990年   90篇
  1989年   90篇
  1988年   86篇
  1987年   66篇
  1986年   74篇
  1985年   89篇
  1984年   104篇
  1983年   92篇
  1982年   108篇
  1981年   98篇
  1980年   86篇
  1979年   45篇
  1978年   49篇
  1977年   46篇
  1976年   55篇
  1975年   27篇
  1974年   36篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
171.
172.
Abstract A Bacillus subtilis strain showed a variety of colony growth patterns on agar plates. The bacterium grew to a fractal colony through the diffusion-limited aggregation process, a round colony reminiscent of the Eden model, a colony with a straight and densely branched structure similar to the dence branching, morphology, a colony spreading without any openings, and a colony with concentric rings, on plates with various agar and nutrient concentrations. The microstructures of these colonies were also characteristic and dynamic. The patterns of these bacterial colonies were thought to grow in relation to the diffusion of nutrient in the agar plate.  相似文献   
173.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   
174.
In suspension cultures of Phytolacca americana , betacyanin accumulation was reduced when cell division was inhibited by treatment with various inhibitors of DNA synthesis or anti-microtubule drugs. Aphidicolin (APC), an inhibitor of DNA synthesis, reduced the incorporation of radioactivity from labeled tyrosine into betacyanin, but the incorporation of radioactivity from labeled 3,4-dihydroxyphenylalanine (DOPA) into betacyanin was not affected by similar treatments. Propyzamide, another anti-microtubule drug, reduced incorporation of radioactivity from tyrosine and DOPA into betacyanin. However, the rate of incorporation from DOPA was higher than that from tyrosine. The results suggest that inhibition of betacyanin accumulation in Phytolacca americana cells by APC and propyzamide is due to suppression of the reaction converting tyrosine to DOPA, which may be closely related to cell division.  相似文献   
175.
The importance of the 2′-hydroxyl and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead ribozyme has been investigated. The three guanosines in the central core of a hammerhead ribozyme were replaced by deoxyinosine, inosine, and deoxyguanosine, and ribozymes containing these analogues were chemically synthesized. Most of the modified ribozymes are drastically descreased in their cleavage efficiency. However. deletion of the 2-amino group at G8 (replacement with inosine, deoxyguanosine, deoxyinosine) caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. Whereas, deletion of the 2′-amino group at G12 and G5 (replacement with inosine, deoxyinosine, and deoxyguanosine) resulted in ribozymes with drastic decrease in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyne sequence were replaced by deoxyuridine (dU). The dU4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that ws about half that observed for the native complex. By comparison, the dU7 complex exhibited a relative cleavage activity within 3.3-fold of that observed with native ribozyme/substrate complex. This result suggests that the 2′-hydroxyl group at U 7 is not essential for activity.

The importance of the 2′-hydroxyl, and 2-amino groups of guanosine residues for the catalytic efficiency of a hammerhead roibozyme has been investigated. Most of the modified rybozymes are drastically decreased in their cleavage efficiency. However, deletion of the 2-amino group at G8 or deletion of the 2′-hydroxyl group at G12 caused little alteration in the catalytic activity relative to that obtained with the unmodified ribozyme. In contrast, two uridine residues, U7 and U4, in the ribozyme sequence were replaced by deoxyuridine (dU). The U4 complex resulted in a decrease in the catalytic rate, with relative cleavage activity that was about half that observed for the native complex.  相似文献   

176.
A membrane preparation from rat brain catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol (lysoPI) to yield monoacylglycerol (MG) and inositolphosphates. This phospholipase C activity had an optimal pH of 8.2. The membrane preparation did not require the addition of Ca2+ for its maximum activity, but the activity was inhibited by addition of 0.1 mM EDTA to the assay mixture and was restored by simultaneous addition of 0.2 mM Ca2+. The activity was found to be localized in synaptic plasma membranes prepared by Ficoll and Percoll density gradients. The phospholipase C was highly specific for lysoPI; diacylglycerol formation from phosphatidylinositol, and MG formation from lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine were below 5% of that observed with lysoPI under the conditions used. We concluded that there is a pathway for phosphatidylinositol metabolism in brain synaptic membranes which is different from the well-characterized phosphoinositide-specific phospholipase C pathway.Abbreviations PI phosphatidylinositol - lysoPI lysophosphatidylinositol - lysoPI-PLC lysophosphoinositide-specific phospholipase C - PI-PLC phosphoinositide-specific phospholipase C - MG monoacylglycerol - PLC phospholipase C To whom to address reprint requests.  相似文献   
177.
Abstract Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents. The low permeability of the mycobacterial cell wall, with its unusual structure, is now known to be a major factor in this resistance. Thus hydrophilic agents cross the cell wall slowly because the myobacterial porin is inefficient in allowing the permeation of solutes and exists in low concentration. Lipophilic agents are presumably slowed down by the lipid bilayer which is of unusually low fluidity and abnormal thickness. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance, which requires synergistic contribution from a second factor, such as the enzymatic inactivation of drugs.  相似文献   
178.
We have analyzed the relationship between autonomously replicating sequence (ARS) structure and function for three ARS (ARS605, ARS607 and ARS609) from chromosome VI of Saccharomyces cerevisiae by systematic XhoI-linker mutation in the ARS consensus sequence (ACS) and flanking sequences. All mutations that encroached upon the ACS destroyed ARS activity. DNA sequences stimulative for ARS function were identified on either side of the ACS of ARS605 and only on the 3'-side of the ACS of ARS607. In ARS609, however, no such stimulative sequences were observed. Base substitutions complementary to the wild-type sequence of those stimulative regions, in ARS605 and ARS607, that did not change the AG of unwinding nor affected ARS activity suggests that these regions have, at least, a function as DNA-unwinding elements (DUE). ARS605, ARS607 and ARS609 DNA are of low AG value and showed hypersensitivity to single-strand-specific nuclease when inserted in negatively supercoiled plasmid. Linker mutations inhibitory for ARS activity (5L11 and 7L14) also caused significant changes in local nucleotide (nt) sensitivity within the ACS and its adjoining regions. Complementary base substitutions, however, did not affect these changes in local nt sensitivity. These results imply that the stimulative regions flanking the ACS are necessary to produce an optimum conformation around the ACS which may be important for full ARS activity.  相似文献   
179.
A subclonal cl.1–14 cell was established from a monocytic cell line U937 by a limiting dilution method. The anti-HIV-1 activity of some antiviral compounds was evaluated in HIV-1-infected cl.1–14 cells. The results demonstrated that although AZT was a potent inhibitor of HIV-1 replication in cl.1–14 cells, its 50% effective concentration (EC50) values was 80 times higher than that in HIV-1 infected MT-4 cells; the EC50 of AZT was 0.16 μM and 0.002 μM in cl.1–14 and MT-4 cells, respectively. In contrast, the anti-HIV-1 activity of ddA, ddI and ddC in cl.1–14 cells was comparable to that in MT-4 cells. The antiviral activity of nevirapine, dextran sulfate, curdlan sulfate and T22 did not differ significantly between the cl. 1–14 and MT-4 cells. The antiviral activity of several compounds in the HIV-1-infected cl.1–14 cells was similar to that in the HIV-1jr -fl -infected human peripheral macrophages. Our results suggest that cl.1–14 cell cultures are very useful for estimating antiviral activity and more advantageous than the use of peripheral blood macrophages.  相似文献   
180.
Summary We previously reported the isolation of rgp1, a gene from rice, which encodes a ras-related GTP-binding protein, and subsequently showed that the gene induces specific morphological changes in transgenic tobacco plants. Here, we report the isolation and characterization of an rgp1 homologue, rgp2, from rice. The deduced rgp2 protein sequence shows 53% identity with the rice rgp1 protein, but 63% identity with both the marine ray ora3 protein, which is closely associated with synaptic vesicles of neuronal tissue, and the mammalian rab11 protein. Conservation of particular amino acid sequence motifs places rgp2 in the rab/ypt subfamily, which has been implicated in vesicular transport. Northern blot analysis of rgp1 and rgp2 suggests that both genes show relatively high, but differential, levels of expression in leaves, stems and panicles, but low levels in roots. In addition, whereas rgp1 shows maximal expression at a particular stage of plantlet growth, rgp2 is constitutively expressed during the same period. Southern blot analysis suggests that, in addition to rgp1 and rgp2, several other homologues exist in rice and these may constitute a small multigene family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号