首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107711篇
  免费   1070篇
  国内免费   821篇
  109602篇
  2022年   75篇
  2021年   133篇
  2020年   68篇
  2019年   97篇
  2018年   11953篇
  2017年   10768篇
  2016年   7695篇
  2015年   991篇
  2014年   745篇
  2013年   1519篇
  2012年   5005篇
  2011年   13628篇
  2010年   12493篇
  2009年   8653篇
  2008年   10555篇
  2007年   12208篇
  2006年   1157篇
  2005年   1445篇
  2004年   1976篇
  2003年   1968篇
  2002年   1672篇
  2001年   446篇
  2000年   308篇
  1999年   224篇
  1998年   241篇
  1997年   241篇
  1996年   185篇
  1995年   161篇
  1994年   132篇
  1993年   191篇
  1992年   171篇
  1991年   155篇
  1990年   127篇
  1989年   121篇
  1988年   132篇
  1987年   105篇
  1986年   101篇
  1985年   103篇
  1984年   118篇
  1983年   109篇
  1982年   121篇
  1981年   100篇
  1980年   94篇
  1979年   56篇
  1978年   48篇
  1977年   50篇
  1976年   54篇
  1974年   44篇
  1972年   270篇
  1971年   289篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Phellinus linteus is a fungus which is found primarily in tropical regions of the Americas, Africa, and Asia.P. linteus has been used in traditional medical practice for the treatment of arthritis, liver damage and cancer. Angiogenesis is a process that involves migration, proliferation and cell differentiation, as well as the formation of new capillary structures. The anti-angiogenic activities evidenced by natural compounds may actually be a critical effect for the inhibition of angiogenesis-dependent disease by these agents via the blockage of vascular development. This study assessed the effects of water extracts fromP. linteus (Phellinus extracts) on primary cultured porcine coronary artery endothelial cells (PCAECs).Phellinus extracts induced no changes in DNA synthesis or cell numbers, but inhibited the migration of PCAECs.Phellinus extracts also induced a reduction in the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9. Our results show that, in endothelial cells,Phellinus extracts may inhibit angiogenesis by reducing levels of MMP-2 and MMP-9 secretion.  相似文献   
922.
923.
On the basis of field data measured during four cruises from January to November 2007, variations in the characteristics of dissolved inorganic nitrogen and phosphate were analyzed in Nansha marine fish cage culture area, Ningbo City, China. Dissolved inorganic nitrogen (DIN) was selected as the parameter to balance seaweed absorption and fish DIN production. The contents of DIN and phosphate varied with different seasons, and eutrophication index (E) value ranged from 2.41 to 15.99, indicating serious eutrophication conditions; the annual average value of N/P of 32.95 indicates a nitrogen surplus in this system. The eutrophication condition in Nansha Bay was mainly caused by the fish cage culture activities. Based on their biological characteristics, Laminaria and Gracilaria were selected as the bioremediation species in winter and spring and summer and autumn, respectively. The optimal co-cultivation proportion of fish cage to Laminaria and Gracilaria in this bay was 1 cage, 450 m2 and one cage, 690 m2, respectively.  相似文献   
924.
The sun’s spectrum harvested through photosynthesis is the primary source of energy for life on earth. Plants, green algae, and cyanobacteria—the major primary producers on earth—utilize reaction centers that operate at wavelengths of 680 and 700 nm. Why were these wavelengths “chosen” in evolution? This study analyzes the efficiency of light conversion into chemical energy as a function of hypothetical reaction center absorption wavelengths given the sun’s spectrum and the overpotential cost associated with charge separation. Surprisingly, it is found here that when taking into account the empirical charge separation cost the range 680–720 nm maximizes the conversion efficiency. This suggests the possibility that the wavelengths of photosystem I and II were optimized at some point in their evolution for the maximal utilization of the sun’s spectrum.  相似文献   
925.
Fungal contamination is a major problem in cell culture, and the antifungal compounds currently in use can affect cultured cells. Echinocandins are antifungal drugs that inhibit fungal cell wall synthesis by targeting an enzyme that has no counterpart in mammalian cells. We evaluated whether the echinocandin caspofungin affected the growth or morphology of six murine cell lines (a macrophage-like cell line (J774.16) and five hybridoma lines), or primary human endothelial cells. The antifungal did not influence cellular characteristics at concentrations less than 512 μg/ml, while effectively reducing the incidence of fungal contamination. Also, caspofungin did not affect the production of antibody by hybridoma cells, or alter the cytokine production of J774.16 cells, although modest increases in IL-4 and IFN-γ occurred upon LPS stimulation. Hence, echinocandins appear to be relatively non-toxic, and protect against fungal contamination in cell culture.  相似文献   
926.
In recent years, Jerusalem artichoke has received widespread attention as a novel source of sugar, biofuel, and animal feed. Currently, only few gDNA-SSRs derived from sunflower were verified in the Jerusalem artichoke; therefore, it is particularly important to develop SSR primer markers that belonged to Jerusalem artichoke resources. Using EST data to develop EST-SSR markers is simple and effective. In order to understand the general characteristics of SSR markers in Jerusalem artichoke EST sequences and accelerate the use of SSR markers in Jerusalem artichoke research. This study used 40,370 sequenced unigene fragments and MISA software to identify SSR loci. The 48 pairs of EST-SSR primers assessed for the identification of 45 varieties of Jerusalem artichoke. Cluster, genetic diversity parameters and AMOVA analysis was conducted using the genetic similarity coefficient, revealing genetic differences between 48 genetic material. A total of 1204 SSR loci were identified with 13 different types of repeats, distributed among 1020 EST sequences, of which trinucleotide repeats were the most common, accounting for 38.21% of the total SSR loci. Among the 44 repeat motifs, AG/CT, AAG/CTT, and ATC/ATG motifs had the highest frequencies, accounting for 22.45, 14.71, and 7.84% of all motifs, respectively. From these sequences, 48 pairs of EST-SSR primers were designed, and 22 primer pairs for loci with high polymorphism were selected to analyze the genetic diversity of 45 Jerusalem artichoke germplasm sources. The results indicated that the variation range of the effective number of alleles for 22 primers ranged between 1.7502 and 4.5660. The Shannon’s information index ranged between 0.6200 and 1.6423. The variation range of PIC ranged between 0.3121 and 0.6662 with an average of 0.5184. Cluster analysis was conducted using the genetic similarity coefficient, revealing significant genetic differences between Asian and European genetic material. Cluster analysis revealed a relationship between the genotypes and geographic origins of the Jerusalem artichoke. The results of AMOVA as well as the genetic identity and genetic distance in the Jerusalem artichoke population showed that there presented certain genetic heterogeneity in Jerusalem artichoke genetic structure of 45 samples from seven different geographic populations. The Jerusalem artichoke EST-SSR marker system established in this study provides an effective molecular marker system for future research focused on Jerusalem artichoke genetic diversity and the breeding of new varieties.  相似文献   
927.
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.  相似文献   
928.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   
929.
Very high gravity (VHG) fermentation is the mainstream technology in ethanol industry, which requires the strains be resistant to multiple stresses such as high glucose concentration, high ethanol concentration, high temperature and harsh acidic conditions. To our knowledge, it was not reported previously that any ethanol-producing microbe showed a high performance in VHG fermentations without amino acid and vitamin. Here we demonstrate the engineering of a xylose utilizing recombinant Zymomonas mobilis for VHG ethanol fermentations. The recombinant strain can produce ethanol up to 136 g/L without amino acid and vitamin with a theoretical yield of 90 %, which is significantly superior to that produced by all the reported ethanol-producing strains. The intracellular fatty acids of the bacterial were about 16 % of the bacterial dry biomass, with the ratio of ethanol:fatty acids was about 273:1 (g/g). The recombinant strain was achieved by a multivariate-modular strategy tackles with the multiple stresses which are closely linked to the ethanol productivity of Z. mobilis. The over-expression of metB/yfdZ operon enabled the growth of the recombinant Z. mobilis in a chemically defined medium without amino acid and vitamin; and the fatty acids overproduction significantly increased ethanol tolerance and ethanol production. The coupled production of ethanol with fatty acids of the Z. mobilis without amino acid and vitamin under VHG fermentation conditions may permit a significant reduction of the production cost of ethanol and microbial fatty acids.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号