首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2240篇
  免费   162篇
  国内免费   1篇
  2403篇
  2022年   16篇
  2021年   28篇
  2020年   11篇
  2019年   13篇
  2018年   22篇
  2017年   27篇
  2016年   44篇
  2015年   58篇
  2014年   74篇
  2013年   124篇
  2012年   133篇
  2011年   140篇
  2010年   69篇
  2009年   82篇
  2008年   131篇
  2007年   115篇
  2006年   109篇
  2005年   120篇
  2004年   112篇
  2003年   103篇
  2002年   97篇
  2001年   60篇
  2000年   48篇
  1999年   45篇
  1998年   26篇
  1997年   25篇
  1996年   16篇
  1995年   18篇
  1994年   17篇
  1993年   14篇
  1992年   51篇
  1991年   45篇
  1990年   38篇
  1989年   32篇
  1988年   30篇
  1987年   26篇
  1986年   13篇
  1985年   27篇
  1984年   34篇
  1983年   20篇
  1982年   19篇
  1981年   16篇
  1980年   17篇
  1979年   13篇
  1978年   16篇
  1977年   11篇
  1976年   16篇
  1975年   13篇
  1974年   9篇
  1970年   8篇
排序方式: 共有2403条查询结果,搜索用时 15 毫秒
991.
992.
993.
Jin H  Sakaida I  Tsuchiya M  Okita K 《Life sciences》2005,76(24):2805-2816
The aim of this study was to investigate whether herbal medicine Rhei rhizome, extract powder from herbs, has influences on the development of liver fibrosis. In in vivo studies the effects of Rhei rhizome were examined using the choline-deficient L-amino acid-defined (CDAA) diet-induced liver fibrosis model. In In vitro studies the effects of Rhei rhizome on type I procollagen mRNA expression, alpha-smooth muscle actin (alpha-SMA), metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) of isolated hepatic stellate cell were examined. In vivo Rhei rhizome prevented fibrosis in a dose-dependent manner up to 1.0% (w/w) with a reduced number of activated stellate cells. In vitro the Rhei rhizome prevented stellate cell activation resulting in reduced type I procollagen mRNA, alpha-SMA and TIMP-1, 2 expression. These results indicate that Rhei rhizome significantly reduces liver fibrosis by the direct inhibition of stellate cell activation without reducing hepatocyte cell death.  相似文献   
994.
Many neurodegenerative diseases are characterized by the presence of protein aggregates bundled with intermediate filaments (IFs) and similar structures, known as Mallory bodies (MBs), are observed in various liver diseases. IFs are anchored at desmosomes and hemidesmosomes, however, interactions with other intercellular junctions have not been determined. We investigated the effect of IF inclusions on junction-associated and cytosolic proteins in various cultured cells. We performed gene transfection of the green fluorescent protein (GFP)-tagged cytokeratin (CK) 18 mutant arg89cys (GFP-CK18 R89C) in cultured cells and observed CK aggregations as well as loss of IF networks. Among various junction-associated proteins, zonula occludens-1 and beta-catenin were colocalized with CK aggregates on immunofluorescent analyses. Similar results were obtained on immunostaining for cytosolic proteins, 14-3-3 zeta protein, glucose-6-phosphate dehydrogenase and DsRed. E-cadherin, a basolateral membrane protein in polarized epithelia, was present on both the apical and basolateral domains in GFP-CK18 R89C-transfected cells. Furthermore, cells containing CK aggregates were significantly larger than GFP-tagged wild type CK18 (GFP-WT CK18)-transfected or non-transfected cells (P < 0.01) and sometimes their morphology was significantly altered. Our data indicate that CK aggregates affect not only cell morphology but also the localization of various cytosolic components, which may affect the cellular function.  相似文献   
995.
A series of molecular pathological investigations of the molecules that stimulate the cyclin dependent kinases (CDK1, 2, 4, and 6) have led to enormous accumulation of knowledge of the clinical significance of these molecules for cancer diagnosis. However, the molecules have yet to be applied to clinical cancer diagnosis, as there is no available technology for application of the knowledge in a clinical setting. We hypothesized that the direct measurement of CDK activities and expressions (CDK profiling) might produce clinically relevant values for the diagnosis. This study investigated the clinical relevance of CDK profiling in gastrointestinal carcinoma tissues by using originally developed expression and activity analysis methods. We have established novel methods and an apparatus for analyzing the expression and activities of the CDK molecules in lysate of tumor tissue in a clinical setting, and examined 30 surgically dissected gastrointestinal carcinomas and corresponding normal mucosal specimens. We demonstrate here that remarkably elevated CDK2 activity is evident in more than 70% of carcinoma tissues. Moreover, a G1-CDK activity profiling accurately mirrored the differences in proliferation between tumor and normal colonic tissues. Our results suggest that CDK profiling is a potent molecular-clinical approach to complement the conventional pathological diagnosis, and to further assist in the individualized medications.  相似文献   
996.
997.
Unmethylated CpG dinucleotides in DNA contribute to a rapid inflammatory response in mammals. Here we show that N(6)-methyladenine (N(6)-MeA), a bacterium-specific modified base, also causes cytokine production. An oligodeoxyribonucleotide (ODN) containing N(6)-MeA induced cytokines when injected into mice. Co-injection of N(6)-MeA and CpG ODNs enhanced cytokines 2- to 3-fold, as compared with the injection of a CpG ODN alone. Plasmid DNA containing N(6)-MeA, complexed with cationic lipids, induced IL-12. These results indicate that the bacterium-specific base, in addition to the unmethylated CpG motif, triggers the mammalian immune response, and suggest that N(6)-MeA-containing DNA could be useful for cellular immunotherapy and DNA vaccine.  相似文献   
998.
Thrombopoietin (TPO) is the growth factor for megakaryocytes and platelets, however, it also acts as a potent regulator of stem cell proliferation. To examine the significance of TPO expression in proliferation of hepatic oval cells, the effect of adenovirus-mediated TPO gene transfer into livers of the Solt-Farber model, which mimics the condition where liver regeneration is impaired, was examined. Hepatic TPO mRNA peaked its expression at 2 days after gene transduction and then gradually decreased. The peripheral platelet number began to increase at 4 days (P<0.05) and reached its plateau at 9 days (P<0.01). Oval cells expressed c-Mpl, a receptor for TPO as well as immature hematopoietic and hepatocytic surface markers such as CD34 and AFP. The proliferating cell nuclear antigen-positive oval cells in rats into which adenovirus-TPO gene was transferred at 7 and 9 days were significantly greater than those in adenovirus-LacZ gene transferred (P<0.05, each), and the total numbers of oval cells in the adenovirus-TPO gene transferred at 9 and 13 days were also significantly greater than those in adenovirus-LacZ gene transferred (P<0.05, each). Expression of SCF protein was increased at 4, 7, and 9 days by TPO gene administration and that of c-Kit was increased at 4 and 7 days. These data suggest that adenovirus-mediated TPO gene transfer stimulated oval cell proliferation in liver as well as increasing peripheral platelet counts, emphasizing the significance of the TPO/c-Mpl system in proliferation of hepatic oval cells.  相似文献   
999.
NorM is a member of the multidrug and toxic compound extrusion (MATE) family and functions as a Na+/multidrug antiporter in Vibrio parahaemolyticus, although the underlying mechanism of the Na+/multidrug antiport is unknown. Acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM are conserved in one of the clusters of the MATE family. In this study, we investigated the role(s) of acidic amino acid residues Asp32, Glu251, and Asp367 in the transmembrane region of NorM by site-directed mutagenesis. Wild-type NorM and mutant proteins with amino acid replacements D32E (D32 to E), D32N, D32K, E251D, E251Q, D367A, D367E, D367N, and D367K were expressed and localized in the inner membrane of Escherichia coli KAM32 cells, while the mutant proteins with D32A, E251A, and E251K were not. Compared to cells with wild-type NorM, cells with the mutant NorM protein exhibited reduced resistance to kanamycin, norfloxacin, and ethidium bromide, but the NorM D367E mutant was more resistant to ethidium bromide. The NorM mutant D32E, D32N, D32K, D367A, and D367K cells lost the ability to extrude ethidium ions, which was Na+ dependent, and the ability to move Na+, which was evoked by ethidium bromide. Both E251D and D367N mutants decreased Na+-dependent extrusion of ethidium ions, but ethidium bromide-evoked movement of Na+ was retained. In contrast, D367E caused increased transport of ethidium ions and Na+. These results suggest that Asp32, Glu251, and Asp367 are involved in the Na+-dependent drug transport process.  相似文献   
1000.
LRP130 (also known as a LRPPRC) is an RNA and single-stranded DNA-binding protein, and recently identified as a candidate gene responsible for the Leigh syndrome, a French-Canadian type cytochrome c oxidase deficiency. However, the biological function of LRP130 still remains largely unresolved. In the present study, we found that the C-terminal half of the mouse LRP130 located within a 120 amino acid sequence (a.a. 845-964) binds to synthetic RNA homopolymers, poly(G), poly(U), and poly(C), as well as r(CUGCC)(6). Assessment of the subcellular localization indicated both nuclear/endoplasmic reticulum (ER) and mitochondrial fractions to be positive. To further analyze the subcellular localization of LRP130, a nuclear/ER fraction was fractionated into the nucleoplasm (NP) and nuclear envelope (NE)/ER, and the latter was further separated into outer nuclear membrane (ONM)/ER and inner nuclear membrane (INM) by treatment with Triton X-100. LRP130 was detectable in all three fractions, and the distribution pattern was in good accordance with that known for ONM/ER proteins. Interestingly, immunostaining of HeLa cells demonstrated nuclear rim staining of LRP130, specifically at the outside of the NE and also at ER, and association of LRP130 with poly(A)(+) RNA was restricted only to the ONM/ER fraction. Overexpression of full-length mouse LRP130 fused with EGFP resulted in nuclear accumulation of poly(A)(+) RNA in HeLa cells. Taking all these results together, it is suggested that LRP130, a novel type of RNA-binding protein, associates with mRNA/mRNP complexes at the outside of NE and ER, and plays a role in control of mRNA metabolisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号