首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1026篇
  免费   50篇
  国内免费   1篇
  1077篇
  2023年   3篇
  2022年   11篇
  2021年   12篇
  2020年   6篇
  2019年   7篇
  2018年   14篇
  2017年   15篇
  2016年   24篇
  2015年   26篇
  2014年   38篇
  2013年   68篇
  2012年   71篇
  2011年   95篇
  2010年   47篇
  2009年   44篇
  2008年   66篇
  2007年   65篇
  2006年   62篇
  2005年   70篇
  2004年   51篇
  2003年   56篇
  2002年   45篇
  2001年   10篇
  2000年   8篇
  1999年   12篇
  1998年   13篇
  1997年   16篇
  1996年   6篇
  1995年   5篇
  1994年   12篇
  1993年   5篇
  1992年   9篇
  1991年   8篇
  1990年   8篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   10篇
  1980年   3篇
  1977年   4篇
  1976年   3篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有1077条查询结果,搜索用时 15 毫秒
991.
Rho family GTPases regulate neuronal morphology. Rnd subfamily is a new branch of Rho family GTPases. Of these GTPases, Rnd2 is specifically expressed in brain. We recently identified Rapostlin as a novel effector of Rnd2. Rapostlin induces neurite branching in response to Rnd2 in PC12 cells. During the cloning of Rapostlin, we have found two mainly expressed splicing variants of Rapostlin (renamed as RapostlinL), RapostlinM and RapostlinS, lacking 29 residues and 61 residues within the unique insert region at the center, respectively, and three minor variants, RapostlinLd, RapostlinMd, and RapostlinSd, each with the identical five-amino acid deletion from RapostlinL, RapostlinM, and RapostlinS, respectively. RapostlinL is predominantly expressed in brain, whereas RapostlinS is expressed ubiquitously. In a dot-blot assay, all splicing variants bind to Rnd2 in a GTP-dependent manner. However, RapostlinM and RapostlinS induce less neurite branching when coexpressed with Rnd2 in PC12 cells, indicating that the insert region is important for the branching activity of RapostlinL. All splicing variants bind to N-WASP in vitro and in vivo through the SH3 domain at the carboxyl terminus, and the SH3 domain is essential for branching activity of RapostlinL. In immunoprecipitation experiments, Rnd2 reduces RapostlinL-N-WASP interaction, whereas it has little effect on the interaction of RapostlinM or RapostlinS with N-WASP. Therefore, we found that functionally different splicing variants of Rapostlin have different responses to Rnd2 in association with N-WASP.  相似文献   
992.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as "risk factors" for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases.  相似文献   
993.
7beta-Hydroxysteroid dehydrogenase (7beta-HSD), a specific enzyme active in the metabolization of 7beta-hydroxycholesterol, was purified about 300-fold from male rabbit liver microsomes using ion exchange, hydroxylapatite, 2'5'ADP Sepharose 4B, and high-performance liquid chromatography on the basis of its catalytic activity. The specific activity of the purified enzyme was 276 nmol/min/mg protein. The molecular weight of the purified enzyme was 34,000. The preferred coenzyme was beta-NADP+. The optimum pH for oxidation was around 7.7 in potassium phosphate buffer, and 11.0 in glycine-NaOH buffer. The purified enzyme catalyzed the synthesis of not only 7beta-hydroxycholesterol but also corticosterone and hydrocortisone. Enzyme activities toward these three substrates accompanied all purification steps of 7beta-HSD. The amino acid sequence of the N-terminal of the purified enzyme showed that 7beta-HSD had sequence similarity to rabbit type I 11beta-hydroxysteroid dehydrogenase (11beta-HSD), indicating that 7beta-HSD may belong to the rabbit type I 11beta-HSD family and may play the same role in the metabolism of 11-hydroxysteroids and 7-hydroxysterols.  相似文献   
994.
We investigated the serum macrophage migration inhibitory factor (MIF) levels of palmoplantar pustulosis patients, before and after the tonsillar provocation test. Higher serum MIF levels of palmoplantar pustulosis patients were decreased after the tonsillar provocation test (n=29). To confirm these phenomena, two patients with acute tonsillitis had their changes in body temperature, C-reactive protein (CRP) and serum MIF levels examined during the course of their illness. Surprisingly, increased MIF preceded fever and CRP elevation, and MIF subsequently decreased at the onset of fever and CRP elevation. Since MIF is an initiator of other proinflammatory cytokines, we suggest that the induction of MIF may precede other inflammatory conditions.  相似文献   
995.
996.
The complicated genetic pathway regulates the developmental programs of male reproductive organ, anther tissues. To understand these molecular mechanisms, we performed cDNA microarray analyses and in situ hybridization to monitor gene expression patterns during anther development in rice. Microarray analysis of 4,304 cDNA clones revealed that the hybridization signal of 396 cDNA clones (271 non-redundant groups) increased more than six-fold in every stage of the anthers compared with that of leaves. Cluster analysis with the expression data showed that 259 cDNA clones (156 non redundant groups) were specifically or predominantly expressed in anther tissues and were regulated by developmental stage-specific manners in the anther tissues. These co-regulated genes would be important for development of functional anther tissues. Furthermore, we selected several clones for RNA in situ hybridization analysis. From these analyses, we found several novel genes that show temporal and spatial expression patterns during anther development in addition to anther-specific genes reported so far. These results indicate that the genes identified in this experiment are controlled by different programs and are specialized in their developmental and cell types.  相似文献   
997.
In order to understand the microspore and pollen development, recently, we have isolated a number of anther-specific genes in the model legume, Lotus japonicus. From these anther-specific genes, we identified one novel microspore-specific gene, LjImfb-c82. In order to determine the molecular characterization of LjImfb-c82, full-length cDNA clone was first isolated and sequenced. It encoded a protein of 286 amino acids (LjHIR1), which had sequence similarity to Hypersensitive-Induced Response like protein. LjHIR1 was specifically expressed in microspore on the in situ hybridization experiment. From the sequence similarity to prohibitin-domain protein, the LjHIR1 might be related to ion channel regulation in microspore development.  相似文献   
998.
Renal cell carcinoma (RCC) has been characterized by high expression of three types of disialogangliosides: two based on lacto-series type 1 structure (disialosyl Lc4, GalNAc disialosyl Lc4), the other based on globo-series structure (disialosyl globopentaosylceramide; disialosyl Gb5). The present study established a mAb, 5F3, directed to disialosyl Gb5. 5F3 was established after immunization with RCC cell line ACHN. The major disialoganglioside antigen isolated from ACHN cells, showing specific reactivity with 5F3, was characterized unequivocally as disialosyl Gb5 (V3NeuAcIV6NeuAcGb5) by identification of the core structure as globopentaosylceramide (Gb5) after enzymatic and acid hydrolysis, and by 2-dimensional 1H-NMR spectroscopy. 5F3 does not react with monosialosyl Gb5 (V3NeuAcGb5), Gb5, or any lacto-series structures. 5F3 strongly stained 19 of 41 cases of primary RCC tissue. It reacted with proximal tubules (but not distal tubules) of kidney, microglial cells of cerebrum and cerebellum, goblet cells of stomach and intestine, smooth muscle of various organs. It did not react with parenchymatous cells of various organs, except for kidney epithelia and prostate stroma. Immunostaining of RCC tissue by mAb 5F3, in combination with staining by other antibodies directed to globo-series and lacto-series structures, has prognostic significance in defining metastatic potential of RCC.  相似文献   
999.
Werner's syndrome (WS) is a rare autosomal recessive disorder characterized by premature aging. The gene responsible for WS encodes a protein homologous to Escherichia coli RecQ. Here we describe a novel Werner helicase interacting protein (WHIP), which interacts with the N-terminal portion of Werner protein (WRN), containing the exonuclease domain. WHIP, which shows homology to replication factor C family proteins, is conserved from E. coli to human. Ectopically expressed WHIP and WRN co-localized in granular structures in the nucleus. The functional relationship between WHIP and WRN was indicated by genetic analysis of yeast cells. Disruptants of the SGS1 gene of Saccharomyces cerevisiae, which is the WRN homologue in yeast, show an accelerated aging phenotype and high sensitivity to methyl methanesulfonate as compared with wild-type cells. Disruption of the yeast WHIP (yWHIP) gene in wild-type cells and sgs1 disruptants resulted in slightly accelerated aging and enhancement of the premature aging phenotype of sgs1 disruptants, respectively. In contrast, disruption of the yWHIP gene partially alleviated the sensitivity to methyl methanesulfonate of sgs1 disruptants.  相似文献   
1000.
Edamatsu  Hironori 《Biometals》2022,35(2):349-362
BioMetals - Mutational activation of the Ras family of proto-oncogenes promotes cell survival and proliferation. Studies using cells cultured in vitro have shown that ectopic expression of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号