首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2552篇
  免费   123篇
  国内免费   1篇
  2676篇
  2022年   19篇
  2021年   23篇
  2020年   22篇
  2019年   18篇
  2018年   36篇
  2017年   28篇
  2016年   49篇
  2015年   63篇
  2014年   79篇
  2013年   163篇
  2012年   144篇
  2011年   151篇
  2010年   77篇
  2009年   88篇
  2008年   134篇
  2007年   138篇
  2006年   137篇
  2005年   132篇
  2004年   103篇
  2003年   111篇
  2002年   103篇
  2001年   53篇
  2000年   62篇
  1999年   59篇
  1998年   31篇
  1997年   23篇
  1996年   17篇
  1995年   21篇
  1994年   27篇
  1993年   14篇
  1992年   68篇
  1991年   43篇
  1990年   29篇
  1989年   34篇
  1988年   47篇
  1987年   41篇
  1986年   22篇
  1985年   26篇
  1984年   20篇
  1983年   28篇
  1982年   13篇
  1981年   12篇
  1980年   11篇
  1979年   24篇
  1976年   11篇
  1974年   13篇
  1973年   11篇
  1972年   13篇
  1970年   13篇
  1968年   13篇
排序方式: 共有2676条查询结果,搜索用时 15 毫秒
51.
Fine structure of the heart and the effects on the heartbeat of some transmitter candidates in crustacean cardioregulatory system were examined in the myogenic heart of the branchiopod crustacean Triops longicaudatus. Electron microscopy revealed that, in each myocardial cell, myofibrils are confined in the part facing the epicardium and intercalated disks are present between the myofibrillar regions of adjacent myocardial cells. No neural elements were found in the heart, suggesting lack of extrinsic cardioregulatory nerves from the central nervous system. Gamma aminobutyric acid and acetylcholine produced no detect-able changes in the myogenic activity of the heart at concentrations up to 10(-3) M, respectively. Glutamate induced a depolarizing membrane response in the cardiac muscle with a threshold concentration of approximately 1x10(-5) M. The amplitude of the depolarizing response was concetration-dependent and saturated at approximately 1x10(-4) M. The myogenic activity of the heart increased in frequency with glutamate of less than approximately 3x10(-5) M. With higher dose of glutamate, action potential adaptation occurred in the cardiac muscle and the heart exhibited a systolic arrest.  相似文献   
52.
* BACKGROUND AND AIMS: The genus Hordeum exists at three ploidy levels (2x, 4x and 6x) and presents excellent material for investigating the patterns of polyploid evolution in plants. Here the aim was to clarify the ancestry of American polyploid species with the I genome. * METHODS: Chromosomal locations of 5S and 18S-25S ribosomal RNA genes were determined by fluorescence in situ hybridization (FISH). In both polyploid and diploid species, variation in 18S-25S rDNA repeated sequences was analysed by the RFLP technique. * KEY RESULTS: Six American tetraploid species were divided into two types that differed in the number of rDNA sites and RFLP profiles. Four hexaploid species were similar in number and location of both types of rDNA sites, but the RFLP profiles of 18S-25S rDNA revealed one species, H. arizonicum, with a different ancestry. * CONCLUSIONS: Five American perennial tetraploid species appear to be alloploids having the genomes of an Asian diploid H. roshevitzii and an American diploid species. The North American annual tetraploid H. depressum is probably a segmental alloploid combining the two closely related genomes of American diploid species. A hexaploid species, H. arizonicum, involves a diploid species, H. pusillum, in its ancestry; both species share the annual growth habit and are distributed in North America. Polymorphisms of rDNA sites detected by FISH and RFLP analyses provide useful information to infer the phylogenetic relationships of I-genome Hordeum species because of their highly conserved nature during polyploid evolution.  相似文献   
53.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   
54.
In this paper, we executed genome mapping and comparative mapping analyses for cvd and hob, autosomal recessive mutations with cerebellar vermis defect and cerebellar dysplasia in the rat. For the linkage analysis, we produced three sets of backcross progeny, (ACI x CVD)F(1) and (F344 x CVD)F(1) females crossed to a cvd homozygous male rat, and (HOB x WKY)F(1) males crossed to hob homozygous female rats. Analysis of the segregation patterns of simple sequence length polymorphism (SSLP) markers scanning the whole rat genome allowed the mapping of these autosomal recessive mutations to rat Chromosome (Chr) 2. The most likely gene order is D2Mgh12 - D2Rat86 - D2Mit15 - D2Rat185 - cvd - D2Rat66 - D2Mgh13, and D2Mit18 - Fga -D2Mit14 - D2Rat16 - hob - D2Mgh13. Crossing test between a proven cvd heterozygous and a hob heterozygous rats demonstrated their allelism. Furthermore, comparative mapping indicated the cvd locus corresponds to mouse chromosome 3 and a strong candidate gene Unc5h3, a causative gene for the rostral cerebellar malformation mouse, was implicated.  相似文献   
55.
The gastrin/cholecystokinin (CCK) family is recognized as the principal family of hormones involved in regulation of the gastrointestinal tract CCK is recognized as a satiety hormone in mammalian species, but it has been suggested that gastrin rather CCK may have an important role in controlling feeding behavior in the neonatal chick through a poorly developed blood brain barrier. So far, however, there is no direct evidence that central gastrin inhibits food intake in neonatal chicks. The aim of this study was to elucidate whether central administration of gastrin 1) inhibits feeding behavior and 2) alters food passage from the crop. The effects of central administration of gastrin on food intake were investigated in experiment 1. Birds (2-day-old) were food-deprived for 3 h and then gastrin or saline was injected intracerebroventricularly. Gastrin strongly inhibited food intake in a dose-dependent fashion for 2 h. Thereafter, the effects of central gastrin on feeding behavior and serum corticosterone concentration were examined in experiment 2. Following central administration of gastrin, food intake was depressed and pecking behavior was inhibited. Serum corticosterone concentration was not altered by central administration of gastrin. The influence of central gastrin on food passage from the crop was investigated in experiment 3. Central administration of gastrin clearly delayed food passage. In conclusion, central gastrin appears to have a strong effect for the satiety and gastrointestinal motility in the neonatal chick.  相似文献   
56.
Shoot apical meristem (SAM) of plants harbors stem cells capable of generating the aerial tissues including reproductive organs. Therefore, it is very important for plants to control SAM proliferation and its density as a survival strategy. The SAM is regulated by the dynamics of a specific gene network, such as the WUS-CLV interaction of A. thaliana. By using a mathematical model, we previously proposed six possible SAM patterns in terms of the manner and frequency of stem cell proliferation. Two of these SAM patterns are predicted to generate either dichotomous or axillary shoot branch. Dichotomous shoot branches caused by this mechanism are characteristic of the earliest vascular plants, such as Cooksonia and Rhynia, but are observed in only a small minority of plant species of the present day. On the other hand, axillary branches are observed in the majority of plant species and are induced by a different dynamics of the feedback regulation between auxin and the asymmetric distribution of PIN auxin efflux carriers. During evolution, some plants may have adopted this auxin-PIN system to more strictly control SAM proliferation.  相似文献   
57.
Sequential processing of amyloid precursor protein (APP) by β- and γ-secretase leads to the generation of amyloid-β (Aβ) peptides, which plays a central role in Alzheimer's disease pathogenesis. APP is capable of forming a homodimer through its extracellular domain as well as transmembrane GXXXG motifs. A number of reports have shown that dimerization of APP modulates Aβ production. On the other hand, we have previously reported that N-cadherin-based synaptic contact is tightly linked to Aβ production. In the present report, we investigated the effect of N-cadherin expression on APP dimerization and metabolism. Here, we demonstrate that N-cadherin expression facilitates cis-dimerization of APP. Moreover, N-cadherin expression led to increased production of Aβ as well as soluble APPβ, indicating that β-secretase-mediated cleavage of APP is enhanced. Interestingly, N-cadherin expression affected neither dimerization of C99 nor Aβ production from C99, suggesting that the effect of N-cadherin on APP metabolism is mediated through APP extracellular domain. We confirmed that N-cadherin enhances APP dimerization by a novel luciferase-complementation assay, which could be a platform for drug screening on a high-throughput basis. Taken together, our results suggest that modulation of APP dimerization state could be one of mechanisms, which links synaptic contact and Aβ production.  相似文献   
58.

Background

The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.

Methodology/Principal Findings

We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness), and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness). Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.

Conclusions/Significance

In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.  相似文献   
59.
Active uptake of a labelled nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB), into isolated superior cervical sympathetic ganglia (SCG) excised from adult rats was considerably stimulated by the addition of either norepinephrine (NE, 50 microM) or 3,4-dihydroxyphenylethylamine (dopamine, DA, 100 microM) to the medium during aerobic incubation for 2 h at 37 degrees C. The NE-induced increase in AIB uptake was significantly antagonized by the addition of an alpha 1-adrenoceptor antagonist (prazosin, 10 microM) in SCG axotomized 1 week prior to the examination, in which most of the ganglionic neurons had degenerated and reactive proliferation of the satellite glial components was in progress. The addition of neither acetylcholine (ACh, 1 mM) plus eserine (0.1 mM) nor cyclic nucleotides (1 mM) changed the AIB uptake by the SCG. In the axotomized SCG, the NE-evoked increase in AIB uptake was much more pronounced than that of intact or denervated SCG. A kinetic study of the active AIB uptake in the SCG showed that NE produced a decrease of the Km value and an increase in the Vmax, especially in the axotomized SCG. Ganglionic Na+, K+-ATPase activity was greatly stimulated in the presence of NE, but not by ACh. These results strongly suggest that the NE-induced enhancement of active AIB uptake in the isolated SCG is occurring in glial cells rather than in neuronal cells, with a possible alteration of membrane properties for amino acid uptake and with an apparent regulation by the stimulated transport enzyme Na+, K+-ATPase.  相似文献   
60.
We had found that yeasts had intracellular endodeoxyribonucleases that cut phage DNA into a set of double-stranded fragments with discrete chain lengths. We purified one of them to apparent homogeneity from Saccharomyces cerevisiae and designated it Endo.Sce I. Sequence analysis around 5 cleavage sites in plasmid DNA and phage DNA revealed that Endo.Sce I cuts a defined phosphodiester bond in each strand of double helix at the cleavage sites and produces free cohesive ends consisting of 4 nucleotides protruding at 3'-termini. However, unlike in the case of prokaryotic type II-restriction endonucleases, (i) Endo.Sce I seems to consist of two nonidentical subunits, (ii) no common palindrome or consensus sequence including more than 5 base pairs is detected at or near these cleavage sites, and (iii) Endo.Sce I can cut the DNA isolated from the cells that produced Endo.Sce I. All of the 5 cleavage sites are included in inverted repeats, but these inverted repeats are variable in size, nucleotide sequence, and distance between repeating units. An inverted repeat itself is not a structure recognized by Endo.Sce I. This study shows that Endo.Sce I is the first example of eukaryotic site-specific endonuclease and has properties, as described above, which distinguish it from prokaryotic restriction endonucleases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号