首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5253篇
  免费   344篇
  国内免费   3篇
  2021年   36篇
  2020年   21篇
  2019年   35篇
  2018年   55篇
  2017年   45篇
  2016年   73篇
  2015年   114篇
  2014年   139篇
  2013年   259篇
  2012年   245篇
  2011年   247篇
  2010年   154篇
  2009年   155篇
  2008年   234篇
  2007年   245篇
  2006年   223篇
  2005年   251篇
  2004年   219篇
  2003年   265篇
  2002年   221篇
  2001年   206篇
  2000年   226篇
  1999年   182篇
  1998年   72篇
  1997年   63篇
  1996年   50篇
  1995年   55篇
  1994年   49篇
  1993年   54篇
  1992年   128篇
  1991年   130篇
  1990年   109篇
  1989年   115篇
  1988年   101篇
  1987年   77篇
  1986年   78篇
  1985年   52篇
  1984年   68篇
  1983年   54篇
  1982年   43篇
  1981年   34篇
  1980年   22篇
  1979年   44篇
  1978年   35篇
  1977年   31篇
  1976年   27篇
  1974年   33篇
  1973年   21篇
  1971年   28篇
  1970年   30篇
排序方式: 共有5600条查询结果,搜索用时 187 毫秒
951.
952.
TGR5 is a member of the G protein-coupled receptor family and is activated by bile acids (BAs). TGR5 is thought to be a promising drug target for metabolic diseases because the activation of TGR5 prevents obesity and hyperglycemia in mice fed a high-fat diet (HFD). In the present study, we identified a naturally occurring limonoid, nomilin, as an activator of TGR5. Unlike BAs, nomilin did not exhibit the farnesoid X receptor ligand activity. Although the nomilin derivative obacunone was capable of activating TGR5, limonin (the most abundant limonoid in citrus seeds) was not a TGR5 activator. When male C57BL/6J mice fed a HFD for 9 weeks were further fed a HFD either alone or supplemented with 0.2% w/w nomilin for 77 days, nomilin-treated mice had lower body weight, serum glucose, serum insulin, and enhanced glucose tolerance. Our results suggest a novel biological function of nomilin as an agent having anti-obesity and anti-hyperglycemic effects that are likely to be mediated through the activation of TGR5.  相似文献   
953.
954.
α-Dystroglycan (α-DG) plays crucial roles in maintaining the stability of cells. We demonstrated previously that the N-terminal domain of α-DG (α-DG-N) is secreted by cultured cells into the culture medium. In the present study, to clarify its function in vivo, we generated a monoclonal antibody against α-DG-N and investigated the secretion of α-DG-N in human cerebrospinal fluid (CSF). Interestingly, we found that a considerable amount of α-DG-N was present in CSF. α-DG-N in CSF was a sialylated glycoprotein with both N- and O-linked glycan. These observations suggest that secreted α-DG-N may be transported via CSF and have yet unidentified effects on the nervous system.  相似文献   
955.
956.
Lysozyme is an enzyme that cleaves the β-1,4-glycosidic linkages between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, leading to bacterial lysis. Recently, lysozyme has been found to have anti-HIV and anti-cancer properties in mammals. However, most functional analyses were done in vitro using purified or recombinant lysozyme protein. Here, we used RNA interference to silence c-type lysozyme expression in penaeid shrimp, Marsupenaeus japonicus, to analyze the function of lysozyme in vivo. Silencing of lysozyme expression by dsRNA lysozyme (dsLYZ) led to 100% mortality without any artificial bacterial infection in 5 days. Lysozyme deficiency caused the number of hemocytes in hemolymph to decrease from 1.3 × 10(7) to 2.3 × 10(6) cells/ml and caused the number of bacteria to increase from 78 to 764 colony-forming units/ml. Suppression of bacterial growth using oxytetracycline and kanamycin showed improvement in mortality, suggesting that shrimp mortality post- dsLYZ injection can be attributed to bacterial growth in the shrimp hemolymph. The majority of the bacteria, identified by 16 S rRNA analysis, were Gram-negative species such as Vibrio and Pseudomonas. Furthermore, PKH26 staining showed that the dsLYZ-injected shrimp were unable to eliminate non pathogenic Escherichia coli or Staphylococcus aureus in 24 h. These data suggest that c-type lysozyme in shrimp serves to regulate the growth of bacterial communities, particularly Gram-negative bacteria, in the hemolymph.  相似文献   
957.
Oxidative stress is closely linked to the pathogenesis of neurodegeneration. Soluble amyloid β (Aβ) oligomers cause cognitive impairment and synaptic dysfunction in Alzheimer disease (AD). However, the relationship between oligomers, oxidative stress, and their localization during disease progression is uncertain. Our previous study demonstrated that mice deficient in cytoplasmic copper/zinc superoxide dismutase (CuZn-SOD, SOD1) have features of drusen formation, a hallmark of age-related macular degeneration (Imamura, Y., Noda, S., Hashizume, K., Shinoda, K., Yamaguchi, M., Uchiyama, S., Shimizu, T., Mizushima, Y., Shirasawa, T., and Tsubota, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 11282-11287). Amyloid assembly has been implicated as a common mechanism of plaque and drusen formation. Here, we show that Sod1 deficiency in an amyloid precursor protein-overexpressing mouse model (AD mouse, Tg2576) accelerated Aβ oligomerization and memory impairment as compared with control AD mouse and that these phenomena were basically mediated by oxidative damage. The increased plaque and neuronal inflammation were accompanied by the generation of N(ε)-carboxymethyl lysine in advanced glycation end products, a rapid marker of oxidative damage, induced by Sod1 gene-dependent reduction. The Sod1 deletion also caused Tau phosphorylation and the lower levels of synaptophysin. Furthermore, the levels of SOD1 were significantly decreased in human AD patients rather than non-AD age-matched individuals, but mitochondrial SOD (Mn-SOD, SOD2) and extracellular SOD (CuZn-SOD, SOD3) were not. These findings suggest that cytoplasmic superoxide radical plays a critical role in the pathogenesis of AD. Activation of Sod1 may be a therapeutic strategy for the inhibition of AD progression.  相似文献   
958.
Nitric oxide (NO) has been implicated in pancreatic β-cell death in the development of diabetes. The mechanisms underlying NO-induced β-cell death have not been clearly defined. Recently, receptor-interacting protein-1 (RIP1)-dependent necrosis, which is inhibited by necrostatin-1, an inhibitor of RIP1, has emerged as a form of regulated necrosis. Here, we show that NO donor-induced β-cell death was inhibited by necrostatin-1. Unexpectedly, however, RIP1 knockdown neither inhibited cell death nor altered the protective effects of necrostatin-1 in NO donor-treated β-cells. These results indicate that NO donor induces necrostatin-1-inhibitable necrotic β-cell death independent of RIP1. Our findings raise the possibility that NO-mediated β-cell necrosis may be a novel form of signal-regulated necrosis, which play a role in the progression of diabetes.  相似文献   
959.
In summer and winter, young, sedentary male (N = 5) and female (N = 7) subjects were exposed to heat in a climate chamber in which ambient temperature (Ta) was raised continuously from 30 to 42°C at a rate of 0.1°C min−1 at a relative humidity of 40%. Sweat rates (SR) were measured continuously on forearm, chest and forehead together with tympanic temperature (Tty), mean skin temperature ( [`T] s ) \left( {\overline {\hbox{T}} {\hbox{s}}} \right) and mean body temperature ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) . The rate of sweat expulsions (Fsw) was obtained as an indicator of central sudomotor activity. Tty and ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) were significantly lower during summer compared with winter in males; SR was not significantly different between summer and winter in males, but was significantly higher during summer in females; SR during winter was higher in males compared with females. The regression line relating Fsw to ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) shifted significantly from winter to summer in males and females, but the magnitude of the shift was not significantly different between the two subject groups. The regression line relating SR to Fsw was steepened significantly from winter to summer in males and females, and the change in the slope was significantly greater in females than in males. Females showed a lower slope in winter and a similar slope in summer compared to males. It was concluded that sweating function was improved during summer mediated by central sudomotor and sweat gland mechanisms in males and females, and, although the change of sweat gland function from winter to summer was greater in females as compared with males, the level of increased sweat gland function during summer was similar between the two subject groups.  相似文献   
960.
Little is known about how the size of an adult animal is determined and regulated. To investigate this issue in hydra, we altered the body size by surgically removing a part of the body column and/or by axial grafting, and examined changes of column length with time. When the body column was shortened it elongated and resumed the original length within 24–48 h. This increase in the body column length was not accompanied by an increase in the number of epithelial cells in the body column. Instead, each of the epithelial cells elongated longitudinally, leading to elongation of the body column. When the body column surpassed the original length, the column shortened over time. This was not accompanied by a decrease in cell number but by the shortening and thickening of the epithelial cells. TEM analysis showed that formation of microtubule arrays takes place longitudinally along the body axis in elongated cells and perpendicular to the axis in shortened cells. Treatment with a drug that degrades microtubules completely blocked changes in body length. These observations suggest that microtubules are involved in regulating the length of the hydra body column by altering the shape of the epithelial cells. We propose from these observations that hydra has a mechanism for detecting the metrical distance between the two ends of the body column.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号