首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   367篇
  免费   21篇
  2021年   2篇
  2019年   4篇
  2017年   4篇
  2016年   5篇
  2015年   21篇
  2014年   14篇
  2013年   33篇
  2012年   24篇
  2011年   22篇
  2010年   17篇
  2009年   13篇
  2008年   6篇
  2007年   25篇
  2006年   28篇
  2005年   17篇
  2004年   20篇
  2003年   12篇
  2002年   29篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   5篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有388条查询结果,搜索用时 109 毫秒
131.
Results from an investigation in an in vivo model of STZ-induced diabetic rats demonstrate that compound bis(1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate)zinc(II), Zn(dmpp)2, significantly lowers the blood glucose levels of individuals, thus showing evidence of glucose lowering activity.The compound was selected from a set of eight zinc(II) complexes of 3-hydroxy-4-pyridinones with diverse lipophilicity that were prepared and characterized in our laboratory. Assessment of insulin-like activity of the complexes was firstly performed in vitro by measuring the inhibition of FFA release in isolated rat adipocytes. The results indicate that compounds bis(2-methyl-3-hydroxy-4-pyridinonate)zinc(II), Zn(mpp)2 and Zn(dmpp)2 display significantly higher activity than that of the respective positive control thus suggesting its selection for in vivo tests.Safety evaluation of the active zinc(II) compounds was performed in freshly isolated rat hepatocytes. The results support that cell viability is not significantly different from the control set after 1 and 2 h of incubation with both zinc(II) complexes.  相似文献   
132.
A series of α-ethylphenylpropanoic acid derivatives was prepared as candidate peroxisome proliferator-activated receptor (PPAR) α-selective agonists, based on our PPARα/δ dual agonist 3 as a lead compound. Structure-activity relationship studies clearly indicated that the steric bulkiness and position of the distal hydrophobic tail part are critical for PPARα agonistic activity and PPARα selectivity, as had been predicted from a molecular-modeling study. A representative compound blocked the progression of nonalcoholic steatohepatitis (NASH) in an animal model.  相似文献   
133.
134.
In order to find orally active Zn(II) complexes that can treat diabetes mellitus (DM) at low doses, four new Zn(II)-dithiocarbamate complexes with Zn(II)-sulfur coordination bonds were prepared and their in vitro insulinomimetic activity and in vivo anti-diabetic ability were evaluated. Among the Zn(II)-dithiocarbamate complexes, the bis(pyrrolidine-N-dithiocarbamate)zinc(II) (Zn(pdc)(2)) complex was found to be the most effective in terms of inhibiting free fatty acid-release and enhancing glucose-uptake in adipocytes. After oral administration of the Zn(pdc)(2) complex to KK-A(y) mice with obesity and type 2 DM, we observed that the high blood glucose levels in the mice were lowered from approximately 500 mg/dL to 350 mg/dL within 6 days, and the effect was maintained during the administration period. Also, indicators of insulin resistance such as serum insulin, leptin, and triglyceride levels were also reduced compared with those in untreated mice. Moreover, the Zn(pdc)(2) complex improved not only the hypertension in the mice, but also the adiponectin level in the serum. On the basis of the results, the Zn(pdc)(2) complex is proposed to improve hyperglycemia and insulin resistance in type 2 DM animals on daily oral administrations.  相似文献   
135.
136.
Aluminum (Al) has been proposed as one of the critical environmental factors responsible for several neurodegenerative diseases such as Alzheimer's disease. However, the suggested mechanism involving the contribution of reactive oxygen species still remains controversial. We have first attempted to identify Al compounds either in its ionic or complexed forms that cause oxidative stress in biological systems. For this purpose, we examined the effect of inorganic Fe(2+)- and organic radical initiator (2,2'-azobis (2-amidinopopane) hydrochloride; AAPH)-induced lipid peroxidation by using aluminum (Al(3+)) nitrate and tris(maltolato)aluminum(III) complex (ALM) with respect to molecular oxygen (O(2)) consumption and membrane fluidity change in liposomes as biological membrane models. The following important results were obtained: (1) ALM enhanced the lipid peroxidation induced by Fe(2+) and AAPH in phosphatidylcholine liposomes; this corresponded well with the promotion of O(2) uptake in the same liposomes, (2) Al(3+) increased both lipid peroxidation and O(2) consumption in phosphatidylserine liposomes in the presence of Fe(2+), and (3) both Al(3+) and ALM affected the membrane fluidity on the inner side. It has been concluded that ALM induces higher lipid peroxidation in liposomes than Al(3+); this finding will be useful to gain an insight into the role of Al in cellular damage in relation to oxidative stress.  相似文献   
137.
Humans and chimpanzees share >99% identity in most proteins. One rare difference is a human-specific inactivating deletion in the CMAH gene, which determines biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc). Since Neu5Gc is prominent on most chimpanzee cell surfaces, this mutation could have affected multiple systems. However, Neu5Gc is found in human cancers and fetuses and in trace amounts in normal human tissues, suggesting an alternate biosynthetic pathway. We inactivated the mouse Cmah gene and studied the in vivo consequences. There was no evidence for an alternate pathway in normal, fetal, or malignant tissue. Rather, null fetuses accumulated Neu5Gc from heterozygous mothers and dietary Neu5Gc was incorporated into oncogene-induced tumors. As with humans, there were accumulation of the precursor N-acetylneuraminic acid and increases in sialic acid O acetylation. Null mice showed other abnormalities reminiscent of the human condition. Adult mice showed a diminished acoustic startle response and required higher acoustic stimuli to increase responses above the baseline level. In this regard, histological abnormalities of the inner ear occurred in older mice, which had impaired hearing. Adult animals also showed delayed skin wound healing. Loss of Neu5Gc in hominid ancestors approximately 2 to 3 million years ago likely had immediate and long-term consequences for human biology.  相似文献   
138.
139.
In order to examine the effect of metallopicolinate complexes with first transition metals and develop complexes that are more active than an insulinomimetic leading compound such as oxovanadium(IV)-picolinate complex, VO(pa)2, 10 metallopicolinate complexes were prepared, and their in vitro insulinomimetic and in vivo antidiabetic activities were evaluated. The in vitro activity was estimated by determining the inhibitory effects of these complexes on free fatty acid release from isolated rat adipocytes treated with epinephrine. Among the complexes, Cu(pa)2, and Mn(pa)3 exhibited higher activity than their respective metal ions and better activity than VO(pa)2. Since Cu(pa)2 was non-toxic in the cultured rat hepatic M cells, this complex was given streptozotocin (STZ)-induced type 1-like diabetic mice by single intraperitoneal injection, and found that this complex exhibited a higher hypoglycemic effect than the VO(pa)2 complex. Based on these results, we propose that Cu(pa)2 may be a potent alternative antidiabetic agent.  相似文献   
140.
Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号