首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   452篇
  免费   32篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   8篇
  2016年   13篇
  2015年   18篇
  2014年   29篇
  2013年   33篇
  2012年   31篇
  2011年   33篇
  2010年   21篇
  2009年   11篇
  2008年   34篇
  2007年   36篇
  2006年   18篇
  2005年   31篇
  2004年   25篇
  2003年   34篇
  2002年   24篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
31.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   
32.

Background

Various forms of cell death, such as apoptotic, autophagic and non-lysosomal types, are implicated in normal physiological processes. Apoptotic protease activating factor 1 (Apaf1) is an important component of the intrinsic apoptotic pathway. Deficiency of Apaf1 results in an accumulation of neural progenitor cells (NPCs) in the developing central nervous system and thus, in perinatal lethality. A small percentage of the mutant mice, however, are viable and grow to maturity. The occurrence of such normal mutants implicates alternative cell death pathways during neurogenesis.

Methods

NPCs prepared from wild-type or Apaf1-deficient embryos were cultured in growth factor-deprived medium and examined for cell death, caspase activation and morphological alterations. Generation of reactive oxygen species (ROS) and the effects of antioxidants were examined.

Results

Wild-type NPCs underwent apoptosis within 24 hours of withdrawal of epidermal growth factor (EGF) or insulin, whereas Apaf1-deficient NPCs underwent cell death but showed no signs of apoptosis. Autophagy was not necessarily accompanied by cell death. Cell death of the Apaf1-deficient NPCs resembled necroptosis—necrosis-like programmed cell death. The necroptosis inhibitor necrostatin-1, however, failed to inhibit the cell death. ROS accumulation was detected in NPCs deprived of growth factors, and an antioxidant partially suppressed the non-apoptotic cell death of Apaf1-deficient NPCs.

Conclusions

These data indicate that after withdrawal EGF or insulin withdrawal, the Apaf1-deficient cells underwent non-apoptotic cell death. ROS generation may partially participate in the cell death.

General Significance

Non-apoptotic cell death in NPCs may be a compensatory mechanism in the developing CNS of Apaf1-deficient embryos.  相似文献   
33.
34.
To determine the tolerance of Salix gracilistyla to repetitive alternate flooding and drought, we measured leaf stomatal conductance, pre-dawn water potential, osmotic adjustment, and biomass production under greenhouse conditions. We used a control and nine crossed treatments (F1-D1–F3-D3) in which we combined 1-, 2-, or 3-week floodings (F) and droughts (D). Leaf stomatal conductance was lowest in 3 weeks of flooding or drought when the preceding event (flood or drought) was also of a 3-week duration. Leaf pre-dawn water potential was reduced in 3 weeks of drought when preceded by 2 or 3 weeks of flooding. Cuttings had slight osmotic adjustments in repetitions of long floodings and droughts. During longer durations of drought in crossed experiments, plants had low root and shoot mass, few hypertrophic lenticels, and reduced leaf mass; when flooding duration increased in crossed experiments, root mass was reduced, there were more hypertrophic lenticels, and the leaf area was reduced. Cuttings achieved stress tolerance by inhibition of transpiration, osmotic adjustment, reduction of transpiration area, and development of hypertrophic lenticels. Stress tolerance was weak when repetitive 2- or 3-week floodings were combined with 3-week droughts. The duration of flooding and drought periods under which S. gracilistyla achieves stress tolerance may be critical in determining distributions along riverbanks.  相似文献   
35.
36.

Background  

Reminiscent of their free-living cyanobacterial ancestor, chloroplasts proliferate by division coupled with the partition of nucleoids (DNA-protein complexes). Division of the chloroplast envelope membrane is performed by constriction of the ring structures at the division site. During division, nucleoids also change their shape and are distributed essentially equally to the daughter chloroplasts. Although several components of the envelope division machinery have been identified and characterized, little is known about the molecular components/mechanisms underlying the change of the nucleoid structure.  相似文献   
37.
The adenovirus vector is very attractive tool not only for the gene therapy but also for the basic sciences. However, because a construction method of this vector had been complex, only limited scientists had constructed and enjoyed the benefits. Recently, various methods were developed and the researchers came to be able to choose an efficient method, which is the COS-TPC method, or a concise procedure, which is the intact-genome transfection method (in vitro ligation method). Here we described not only these methods but also new method to construct the various Ads simultaneously using the recombinase-mediated cassette exchange (RMCE) by the site-specific recombinase. And also we want to refer the possibility to the worth of the vector, especially the vector of the expression-switch.  相似文献   
38.
We have developed a new class of N-methyl-d-aspartate (NMDA) channel blockers having a conjugate structure that consists of a nitrogenous heterocyclic head and a tetraamine tail. Among them, dihydrodibenzazepine-homospermine conjugate (8) exhibited potent antagonistic activity at NR1/NR2A or NR1/NR2B NMDA subtype receptors compared with the lead compound, AQ343 (1), or memantine, as well as weak cytotoxicity. Its superior biological profiles compared with known compounds point to its potential use as therapeutic agents for neurological disorders.  相似文献   
39.
40.
Transformation and cancer growth are regulated by the coordinate actions of oncogenes and tumor suppressors. Here, we show that the novel E3 ubiquitin ligase HACE1 is frequently downregulated in human tumors and maps to a region of chromosome 6q21 implicated in multiple human cancers. Genetic inactivation of HACE1 in mice results in the development of spontaneous, late-onset cancer. A second hit from either environmental triggers or genetic heterozygosity of another tumor suppressor, p53, markedly increased tumor incidence in a Hace1-deficient background. Re-expression of HACE1 in human tumor cells directly abrogates in vitro and in vivo tumor growth, whereas downregulation of HACE1 via siRNA allows non-tumorigenic human cells to form tumors in vivo. Mechanistically, the tumor-suppressor function of HACE1 is dependent on its E3 ligase activity and HACE1 controls adhesion-dependent growth and cell cycle progression during cell stress through degradation of cyclin D1. Thus, HACE1 is a candidate chromosome 6q21 tumor-suppressor gene involved in multiple cancers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号