首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   130篇
  国内免费   1篇
  2275篇
  2022年   9篇
  2021年   19篇
  2020年   16篇
  2019年   27篇
  2018年   15篇
  2017年   28篇
  2016年   45篇
  2015年   70篇
  2014年   82篇
  2013年   124篇
  2012年   141篇
  2011年   144篇
  2010年   76篇
  2009年   94篇
  2008年   131篇
  2007年   141篇
  2006年   121篇
  2005年   117篇
  2004年   117篇
  2003年   146篇
  2002年   130篇
  2001年   18篇
  2000年   19篇
  1999年   25篇
  1998年   29篇
  1997年   23篇
  1996年   16篇
  1995年   22篇
  1994年   18篇
  1993年   17篇
  1992年   23篇
  1991年   12篇
  1990年   15篇
  1989年   12篇
  1988年   11篇
  1987年   19篇
  1986年   17篇
  1985年   9篇
  1984年   10篇
  1981年   8篇
  1980年   8篇
  1979年   12篇
  1978年   18篇
  1977年   10篇
  1976年   8篇
  1975年   8篇
  1974年   9篇
  1973年   10篇
  1972年   9篇
  1971年   10篇
排序方式: 共有2275条查询结果,搜索用时 0 毫秒
131.
132.
133.
In adoptive immunotherapy, the number of effector cells is one of the major factors relating to the therapeutic efficacy. We demonstrated that tumor-infiltrating lymphocytes (TILs) were stimulated to proliferate by incubation with interleukin 2 (IL-2) plus interleukin 4 (IL-4). TILs cultured with IL-2 plus IL-4 increased 3.1-fold more than TILs cultured with IL-2 alone. However, IL-4 did not alter the cytotoxic activity of TILs against autologous tumor cells and established tumor cell lines. It is suggested that IL-2 receptor is related to the mechanism of the proliferation of activated TILs cultured by combination with IL-2 and IL-4. Thus, the combination of IL-2 and IL-4 may increase the efficacy of adoptive immunotherapy using activated TILs.  相似文献   
134.
Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation.  相似文献   
135.
(R)-Specific enoyl-coenzyme A (enoyl-CoA) hydratases (PhaJs) are capable of supplying monomers from fatty acid β-oxidation to polyhydroxyalkanoate (PHA) biosynthesis. PhaJ1Pp from Pseudomonas putida showed broader substrate specificity than did PhaJ1Pa from Pseudomonas aeruginosa, despite sharing 67% amino acid sequence identity. In this study, the substrate specificity characteristics of two Pseudomonas PhaJ1 enzymes were investigated by site-directed mutagenesis, chimeragenesis, X-ray crystallographic analysis, and homology modeling. In PhaJ1Pp, the replacement of valine with isoleucine at position 72 resulted in an increased preference for enoyl-coenzyme A (CoA) elements with shorter chain lengths. Conversely, at the same position in PhaJ1Pa, the replacement of isoleucine with valine resulted in an increased preference for enoyl-CoAs with longer chain lengths. These changes suggest a narrowing and broadening in the substrate specificity range of the PhaJ1Pp and PhaJ1Pa mutants, respectively. However, the substrate specificity remains broader in PhaJ1Pp than in PhaJ1Pa. Additionally, three chimeric PhaJ1 enzymes, composed from PhaJ1Pp and PhaJ1Pa, all showed significant hydratase activity, and their substrate preferences were within the range exhibited by the parental PhaJ1 enzymes. The crystal structure of PhaJ1Pa was determined at a resolution of 1.7 Å, and subsequent homology modeling of PhaJ1Pp revealed that in the acyl-chain binding pocket, the amino acid at position 72 was the only difference between the two structures. These results indicate that the chain-length specificity of PhaJ1 is determined mainly by the bulkiness of the amino acid residue at position 72, but that other factors, such as structural fluctuations, also affect specificity.  相似文献   
136.
137.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is one of the most refractory to therapy when it forms biofilms in the airways of cystic fibrosis patients. To date, studies regarding the production of an immunogenic and protective antigen to inhibit biofilm formation by P. aeruginosa have been superficial. The previously uncharacterized outer membrane protein (OMP) Opr86 (PA3648) of P. aeruginosa is a member of the Omp85 family, of which homologs have been found in all gram-negative bacteria. Here we verify the availability of Opr86 as a protective antigen to inhibit biofilm formation by P. aeruginosa PAO1 and several other isolates. A mutant was constructed in which Opr86 expression could be switched on or off through a tac promoter-controlled opr86 gene. The result, consistent with previous Omp85 studies, showed that Opr86 is essential for viability and plays a role in OMP assembly. Depletion of Opr86 resulted in streptococci-like morphological changes and liberation of excess membrane vesicles. A polyclonal antibody against Opr86 which showed reactivity to PAO1 cells was obtained. The antibody inhibited biofilm formation by PAO1 and the other clinical strains tested. Closer examination of early attachment revealed that cells treated with the antibody were unable to attach to the surface. Our data suggest that Opr86 is a critical OMP and a potential candidate as a protective antigen against biofilm formation by P. aeruginosa.  相似文献   
138.
It is known that lipopolysaccharide (LPS)-induced monocyte chemotactic protein (MCP)-1 secretion from tissues recruits monocytes from the circulation, but the mechanism of the LPS-induced MCP-1 production in skeletal muscle is largely unexplained. To clarify the effect of LPS on MCP-1 production in skeletal muscle cells, C2C12 cells from a mouse skeletal muscle cell line, and RAW 264.7 cells from a mouse macrophage cell line, were used to assess production of LPS-induced MCP-1, nitric oxide (NO) and interferon (IFN)-beta. In addition, we evaluated inducible NO synthases (iNOS) mRNA expression using RT-PCR, and cell surface expression of CD14 and toll-like receptor (TLR) 4 using flow cytometry. In C2C12 cells, LPS stimulation increased MCP-1 production (p < 0.01), but combined treatment with LPS and NO inducer, diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate (NONOate), significantly inhibited its production (p < 0.01). LPS stimulation neither induced production of NO nor of IFN-beta, which is an NO inducer. Recombinant IFN-beta stimulation, on the other hand, enhanced LPS-induced NO production (p < 0.01). Interestingly, we found that surface expression of CD14, which regulates IFN-beta production, in C2C12 cells was much lower than that in RAW 264.7 cells, although TLR4 expression on C2C12 cells was similar to that on RAW 264.7 cells. These data suggest that the reduced NO production in response to LPS may depend on low expression of CD14 on the cell surface of skeletal muscle, and that it may enhance LPS-induced MCP-1 production. Together, these functions of skeletal muscle could decrease the risk of bacterial infection by recruitment of monocytes.  相似文献   
139.
Two sucrose phosphorylases were employed for glycosylation of carboxylic acid compounds. Streptococcus mutans sucrose phosphorylase showed remarkable transglycosylating activity, especially under acidic conditions. Leuconostoc mesenteroides sucrose phosphorylase exhibited very weak transglycosylating activity. Three main products were detected from the reaction mixture using benzoic acid and sucrose as an acceptor and a donor molecule, respectively. These compounds were identified as 1-O-benzoyl α-d-glucopyranoside, 2-O-benzoyl α-d-glucopyranose, and 2-O-benzoyl β-d-glucopyranose by 1D-and 2D-NMR analyses of the isolated products and their acetylated products. Time-course analyses proved that 1-O-benzoyl α-d-glucopyranoside was initially produced by the transglycosylation reaction of the enzyme. 2-O-Benzoyl α-d-glucopyranose and 2-O-benzoyl β-d-glucopyranose were produced from 1-O-benzoyl α-d-glucopyranoside by intramolecular acyl migration reaction. S. mutans sucrose phosphorylase showed broad acceptor-specificity. This sucrose phosphorylase catalyzed transglycosylation to various carboxylic compounds such as short-chain fatty acids, hydroxy acids, dicarboxylic acids, and phenolic carboxylic acids. 1-O-Acetyl α-d-glucopyranoside was also enzymatically synthesized by transglucosylation reaction of the enzyme. The sensory test of acetic acid and the glucosides revealed that the sour taste of acetic acid glucosides was significantly lower than that of acetic acid.  相似文献   
140.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号