首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1984篇
  免费   121篇
  国内免费   1篇
  2106篇
  2022年   9篇
  2021年   19篇
  2020年   16篇
  2019年   23篇
  2018年   15篇
  2017年   26篇
  2016年   42篇
  2015年   71篇
  2014年   79篇
  2013年   115篇
  2012年   136篇
  2011年   131篇
  2010年   73篇
  2009年   88篇
  2008年   122篇
  2007年   135篇
  2006年   113篇
  2005年   112篇
  2004年   107篇
  2003年   141篇
  2002年   119篇
  2001年   16篇
  2000年   18篇
  1999年   21篇
  1998年   29篇
  1997年   19篇
  1996年   16篇
  1995年   21篇
  1994年   17篇
  1993年   15篇
  1992年   18篇
  1991年   10篇
  1990年   10篇
  1989年   8篇
  1987年   12篇
  1986年   10篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1980年   8篇
  1979年   10篇
  1978年   15篇
  1977年   9篇
  1976年   9篇
  1975年   9篇
  1974年   8篇
  1973年   11篇
  1972年   8篇
  1971年   10篇
排序方式: 共有2106条查询结果,搜索用时 0 毫秒
81.
We succeeded in obtaining a strain adapted to higher temperature from a thermotolerant strain, Gluconobacter frateurii CHM43, for sorbose fermentation. The adapted strain showed higher growth and L: -sorbose production than original CHM43 strain at higher temperature around 38.5-40?°C. It was also shown to be useful even with the fermentation without temperature control. To understand the sorbose fermentation ability of the adapted strain at higher temperature, D: -sorbitol-oxidizing respiratory chain was compared with the CHM43 strain and the adapted strain. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH), which is a primary dehydrogenase of the respiratory chain and responsible for L: -sorbose production, was decreased when the temperature increased, but the decreased activity of GLDH was recovered by the addition of PQQ. Since the adapted strain was found to produce more PQQ than the CHM43 strain, it was suggested that the adapted strain keeps GLDH as holoenzyme with the increased PQQ production, and thus produces more L: -sorbose and grows better under higher temperature.  相似文献   
82.
uPA (urokinase-type plasminogen activator) stimulates cell migration through multiple pathways, including formation of plasmin and extracellular metalloproteinases, and binding to the uPAR (uPA receptor; also known as CD87), integrins and LRP1 (low-density lipoprotein receptor-related protein 1) which activate intracellular signalling pathways. In the present paper we report that uPA-mediated cell migration requires an interaction with fibulin-5. uPA stimulates migration of wild-type MEFs (mouse embryonic fibroblasts) (Fbln5+/+ MEFs), but has no effect on fibulin-5-deficient (Fbln5-/-) MEFs. Migration of MEFs in response to uPA requires an interaction of fibulin-5 with integrins, as MEFs expressing a mutant fibulin-5 incapable of binding integrins (Fbln(RGE/RGE) MEFs) do not migrate in response to uPA. Moreover, a blocking anti-(human β1-integrin) antibody inhibited the migration of PASMCs (pulmonary arterial smooth muscle cells) in response to uPA. Binding of uPA to fibulin-5 generates plasmin, which excises the integrin-binding N-terminal cbEGF (Ca2+-binding epidermal growth factor)-like domain, leading to loss of β1-integrin binding. We suggest that uPA promotes cell migration by binding to fibulin-5, initiating its cleavage by plasmin, which leads to its dissociation from β1-integrin and thereby unblocks the capacity of integrin to facilitate cell motility.  相似文献   
83.
84.
85.
Polyphenol have been reported to have physiological effects with respect to alleviating diseases such as osteoporosis and osteopetrosis. We recently reported that the olive polyphenol hydroxytyrosol accelerates bone formation both in vivo and in vitro. The present study was designed to evaluate the in vivo and in vitro effects of apigenin (4′,5,7-trihydroxyflavone), one of the major polyphenols in olives and parsley, on bone formation by using cultured osteoblasts and osteoclasts and ovariectomized (OVX) mice, respectively. Apigenin markedly inhibited cell proliferation and indices of osteoblast differentiation, such as collagen production, alkaline phosphatase activity, and calcium deposition in osteoblastic MC3T3-E1 cells at concentrations of 1–10 μM. At 10 μM, apigenin completely inhibited the formation of multinucleated osteoclasts from mouse splenic cells. Moreover, injection of apigenin at 10 mg kg−1 body weight significantly suppressed trabecular bone loss in the femurs of OVX mice. Our findings indicate that apigenin may have critical effects on bone maintenance in vivo.  相似文献   
86.
Evidence suggests that the plasma membrane Ca2+-ATPase (PMCA), which is critical for maintaining a low intracellular Ca2+ concentration ([Ca2+]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca2+]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca2+]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca2+]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.  相似文献   
87.
88.

Purpose

Despite the advent of FDA-approved therapeutics to a limited number of available targets (kinases and mTOR), PFS of kidney cancer (RCC) has been extended only one to two years due to the development of drug resistance. Here, we evaluate a novel therapeutic for RCC which targets the exportin-1 (XPO1) inhibitor.

Materials and Methods

RCC cells were treated with the orally available XPO1 inhibitor, KPT-330, and cell viability and Annexin V (apoptosis) assays, and cell cycle analyses were performed to evaluate the efficacy of KPT-330 in two RCC cell lines. Immunoblotting and immunofluorescence analysis were performed to validate mechanisms of XPO1 inhibition. The efficacy and on-target effects of KPT-330 were further analyzed in vivo in RCC xenograft mice, and KPT-330-resistant cells were established to evaluate potential mechanisms of KPT-330 resistance.

Results

KPT-330 attenuated RCC viability through growth inhibition and apoptosis induction both in vitro and in vivo, a process in which increased nuclear localization of p21 by XPO1 inhibition played a major role. In addition, KPT-330 resistant cells remained sensitive to the currently approved for RCC multi-kinase inhibitors (sunitinib, sorafenib) and mTOR inhibitors (everolimus, temsirolimus), suggesting that these targeted therapeutics would remain useful as second line therapeutics following KPT-330 treatment.

Conclusion

The orally-available XPO1 inhibitor, KPT-330, represents a novel target for RCC whose in vivo efficacy approaches that of sunitinib. In addition, cells resistant to KPT-330 retain their ability to respond to available RCC therapeutics suggesting a novel approach for treatment in KPT-330-naïve as well as -resistant RCC patients.  相似文献   
89.
The distribution of an antihypertensive dipeptide, Val-Tyr (VY), in the tissues of spontaneously hypertensive rats (SHR) was investigated in this study. A single oral administration of VY (10 mg/kg) to 18-week-old SHR resulted in a prolonged reduction of systolic blood pressure (SBP) up to 9 h (SBP0h 198.0+/-3.6 mmHg; SBP9h 154.6+/-3.5 mmHg). As a result of VY determination, a roughly 10-fold higher increment of plasma VY level was observed at 1 h than that at 0 h, whereas thereafter the level declined rapidly. In tissues, VY was widely accumulated in the kidney, lung, heart, mesenteric artery and abdominal aorta with the area under the curve over 9 h of more than 40 pmol h/g tissue; of these a higher VY level was observed in the kidney and lung. In addition, a mean resident time (MRT) for each tissue (>5 h except for liver) revealed that VY preferably accumulated in the tissues rather than in the plasma (MRT 3.8 h). Significant reductions of tissue angiotensin I-converting enzyme activity and angiotensin II level were found in the abdominal aorta as well as in the kidney, suggesting that these organs could be a target site associated with the antihypertensive action of VY.  相似文献   
90.
Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号