首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5423篇
  免费   379篇
  国内免费   1篇
  2021年   49篇
  2020年   35篇
  2019年   48篇
  2018年   55篇
  2017年   64篇
  2016年   105篇
  2015年   146篇
  2014年   164篇
  2013年   302篇
  2012年   293篇
  2011年   320篇
  2010年   175篇
  2009年   194篇
  2008年   268篇
  2007年   267篇
  2006年   256篇
  2005年   212篇
  2004年   258篇
  2003年   270篇
  2002年   248篇
  2001年   125篇
  2000年   138篇
  1999年   122篇
  1998年   74篇
  1997年   53篇
  1996年   63篇
  1995年   60篇
  1994年   45篇
  1993年   51篇
  1992年   104篇
  1991年   108篇
  1990年   85篇
  1989年   88篇
  1988年   86篇
  1987年   65篇
  1986年   54篇
  1985年   53篇
  1984年   56篇
  1983年   41篇
  1982年   44篇
  1981年   37篇
  1980年   31篇
  1979年   68篇
  1978年   44篇
  1977年   43篇
  1976年   29篇
  1975年   38篇
  1974年   40篇
  1973年   30篇
  1972年   31篇
排序方式: 共有5803条查询结果,搜索用时 15 毫秒
901.
This study investigated the role of endogenous interleukin (IL)-10 in cutaneous wound healing. Both IL-10 mRNA and protein were detectable in murine incised wounds for 10 days after injury. The IL-10 protein level peaked 3 h after incision, returned to the normal level by 24 h, but increased again to another peak at 72 h. In situ hybridization studies and immunostaining revealed that epidermal cells and infiltrating mononuclear cells were the major source of IL-10. Neutralizing antibody studies demonstrated that IL-10 inhibited the infiltration of neutrophils and macrophages toward the site of injury. IL-10 also inhibited overexpression of C-C chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha) and proinflammatory cytokines (IL-1beta, IL-6, tumor necrosis factor-alpha) in vivo. These results suggest that IL-10 may play an important regulatory role in the phase-specific infiltration of neutrophils and macrophages as well as the cytokine production in the inflammatory response of cutaneous wound healing.  相似文献   
902.
903.
904.
We reviewed the literature concerning the history of determination of the ploidy of human megakaryocytes and its relationship with diseases. The ploidy of rabbit megakaryocytes was analyzed by microspectrophotometry in 1964, and the analysis of the ploidy in human megakaryocytes was first performed in 1968. Presently, microphotometry and flow cytometry are the primary methods for the evaluation of the ploidy, but they have their merits and demerits. In the ploidy of human megakaryocytes, a peak has often been reported at 16N in healthy individuals, and the next peaks have been observed at 32N and 8N. The results of ploidy analyses have been reported by many investigators to be comparable between patients with idiopathic thrombocytopenic purpura and normal subjects, but various shifts of the peaks have also been documented. The ploidy is often reported to shift to a larger ploidy class in polycythemia vera and essential thrombocythemia, but it has invariably been reported to shift to a smaller class in chronic myelogenous leukemia. In reactive thrombocytosis, the ploidy pattern was reported to be the same as that in normal individuals by some investigators but to shift to a larger ploidy by others. These differences are considered to be due to heterogeneity of the subjects. In myelodysplastic syndrome, the ploidy shifts mostly to a smaller class, but it may show various patterns. We also reviewed the ploidy in other rare hematological disorders, the relationships of the ploidy with diabetes mellitus and atherosclerotic disorders, and its changes in the ontogeny. Details of the mechanism of polyploidization and its biological significance remain unknown, and further advances in the studies of these topics are anticipated.  相似文献   
905.
906.
Few studies have been conducted focusing on a potential role of reactive oxygen species in tumor cell metabolism. Here we studied human colorectal adenocarcinomas and adenomas to determine whether oxidative stress is imposed on cancer cells in vivo and used specific antibodies against 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal (HNE)-modified proteins, and 3-nitro-L-tyrosine (3-NT) to determine whether there is an association between oxidative stress and cellular proliferation. Higher levels of oxidative modifications in DNA and proteins were observed in carcinoma cells, but not in adenoma cells, than in the corresponding nontumorous epithelial cells by immunohistochemistry as well as high-performance liquid chromatography (HPLC)-based 8-OHdG determination. The fraction of proliferating cell nuclear antigen-positive cells was proportionally associated in adenocarcinomas with the staining intensities of 8-OHdG and 3-NT. Furthermore, Western blot analysis of the proteins extracted from carcinoma cells revealed several specific proteins modified by HNE or peroxynitrite. Thus we concluded that colorectal carcinoma, but not adenoma cells, are exposed to more oxidative stress than their corresponding nontumorous epithelial cells, regardless of clinical stage and histology, and further that the oxidative stress in carcinoma cells might stimulate cellular proliferation.  相似文献   
907.
In the present study, we show that melatonin induces the expression of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme of glutathione (GSH) synthesis, in ECV304 human vascular endothelial cells. One micromolar melatonin induced the expression of gamma-GCS mRNA followed by an increase in the concentration of GSH with a peak at 24 h. An electrophoretic mobility shift assay showed that melatonin stimulates the DNA-binding activity of activator protein-1 (AP-1) as well as retinoid Z receptor/retinoid receptor-related orphan receptor alpha (RZR/RORalpha). ECV304 cells transiently transfected with a plasmid containing the gamma-GCS promoter-luciferase construct showed increased luciferase activity when treated with melatonin. The melatonin-dependent luciferase activity was found in the gamma-GCS promoter containing AP-1 site. The luciferase activity mediated by AP-1 was repressed in the promoter containing RZR/RORalpha site. In addition, cell cycle analysis showed that melatonin increases the number of cells in the G0/G1 phase; however, treatment of the cells with buthionine sulfoximine, a specific inhibitor of gamma-GCS, abolished the effect of melatonin on the cell cycle, suggesting induction of cell arrest by melatonin requires GSH. As conclusion, induction of GSH synthesis by melatonin protects cells against oxidative stress and regulates cell proliferation.  相似文献   
908.
The recessive mutant mouse jumonji (jmj), obtained by a gene trap strategy, shows neural tube defects in approximately half of homozygous embryos with a BALB/cA and 129/Ola mixed background, but no neural tube defects with BALB/cA, C57BL/6J, and DBA/2J backgrounds. Here, we show that neural tube and cardiac defects are observed in all embryos with a C3H/HeJ background. In addition, abnormal groove formation and prominent flexure are observed on the neural plate with full penetrance, suggesting that abnormal groove formation leads to neural tube defects. We found morphogenetic abnormalities in the bulbus cordis (future outflow tract and the right ventricle) of homozygous embryo hearts. Moreover, myocytes in the ventricular trabeculae show hyperplasia with cells filling the ventricles. Together with the observation that the jmj gene is expressed in the neural epithelium of the head neural plate and in myocytes in the bulbus cordis and trabeculae, the results show that the jmj gene plays essential roles in the normal development of the neural plate, morphogenesis of bulbus cordis, and proliferation of trabecular myocytes on a C3H/He background.  相似文献   
909.
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号