首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5419篇
  免费   378篇
  国内免费   1篇
  2021年   49篇
  2020年   35篇
  2019年   48篇
  2018年   55篇
  2017年   64篇
  2016年   105篇
  2015年   146篇
  2014年   164篇
  2013年   302篇
  2012年   293篇
  2011年   320篇
  2010年   175篇
  2009年   194篇
  2008年   268篇
  2007年   267篇
  2006年   256篇
  2005年   212篇
  2004年   258篇
  2003年   270篇
  2002年   248篇
  2001年   125篇
  2000年   138篇
  1999年   122篇
  1998年   74篇
  1997年   53篇
  1996年   63篇
  1995年   60篇
  1994年   45篇
  1993年   51篇
  1992年   104篇
  1991年   108篇
  1990年   85篇
  1989年   88篇
  1988年   86篇
  1987年   65篇
  1986年   54篇
  1985年   53篇
  1984年   56篇
  1983年   41篇
  1982年   44篇
  1981年   37篇
  1980年   31篇
  1979年   68篇
  1978年   44篇
  1977年   43篇
  1976年   29篇
  1975年   38篇
  1974年   40篇
  1973年   30篇
  1972年   31篇
排序方式: 共有5798条查询结果,搜索用时 31 毫秒
101.
Genetic studies have uncovered many genes that are involved in the first steps of neuronal development inDrosophila.Less is known about the intermediate steps during which individual precursor cells follow either the neuronal pathway or the glial pathway. We report the identification of a novel bHLH gene,biparous,expressed in neuronal and glial precursors inDrosophila.Unlike most bHLH genes,biparousexpression continues to the final stages of neurogenesis in the embryo. Expression ofbiparousis not observed in end stage postmitotic neurons and precedes the expression ofrepo,a gene activated in later stages of glial differentiation. The bHLH domain is sufficiently different from previously described bHLH domains to imply a novel function.  相似文献   
102.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   
103.
Abstract Vibrio cholerae strain TSI-4 was incubated in an M9 salt solution at 15 °C for more than 100 days. The plate counts showed no viable cells on day 30, but a broth culture from that day showed the growth of bacteria. However, after 35 days the bacteria entered the nonculturable state, based on the assessment of both the plate counts and broth culture. A portion of the culture was heated at 45 °C for 1 min in a water bath and subsequently plated onto a nutrient agar plate. More than 1000 colonies were recovered after this heat-shock treatment. The recovered cells showed the same chromosomal DNA pattern in the restriction map and the same outer membrane protein pattern in SDS-PAGE. Recovery of viable cells by heat-shock was achieved in cultures grown on M9 salt but not from cultures grown in phosphate-buffered saline. This suggests that the presence of NH4Cl in the M9 salt solution may support the growth of the bacteria in a low nutrient medium, while also playing an important role in resuscitation.  相似文献   
104.
Structural and serological studies were performed with the lipopolysaccharide (LPS) expressed by Escherichia coli K12 strains No. 30 and No. 64, into which cosmid clones derived from Vibrio cholerae O1 NIH 41 (Ogawa) and NIH 35A3 (Inaba) had been introduced, respectively. The two recombinant strains, No. 30 (Ogawa) and No. 64 (Inaba), produced LPS that included, in common, the O-polysaccharide chain composed of an α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine (4-amino-4,6-dideoxy-D -manno-pyranose) homopolymer attached to the core oligosaccharide of the LPS of E. coli K12. Structural analysis revealed the presence of N-(3-deoxy-L -glycero-tetronyl)-2-O-methyl-D -perosamine at the non-reducing terminus of the O-polysaccharide chain of LPS from No. 30 (Ogawa) but not from No. 64 (Inaba). Serological analysis revealed that No. 30 (Ogawa) and No. 64 (Inaba) LPS were found to share the group antigen factor A of V. cholerae O1. They were distinguished by presence of the Ogawa antigen factor B [co-existing with relatively small amounts of the Inaba antigen factor (c)] in the former LPS and the Inaba antigen factor C in the latter LPS. It appears, therefore, that No. 30 (Ogawa) and No. 64 (Inaba) have O-antigenic structures that are fully consistent with the AB(c) structure for the Ogawa and the AC structure for the Inaba O-forms of V. cholerae O1, respectively. Thus, the present study clearly confirmed our previous finding that the Ogawa antigenic factor B is substantially related to the 2-O-methyl group at the non-reducing terminus of the α(1 → 2)-linked N-(3-deoxy-L -glycero-tetronyl)-D -perosamine homopolymer that forms the O-polysaccharide chain of LPS of V. cholerae O1 (Ogawa).  相似文献   
105.
We isolated and sequenced a genomic clone (CatA) encoding CAT-A catalase, a homologue of the maize catalase isozyme 3 (CAT-3) from rice (Oryza sativa L.). The 5-upstream non-coding region had very low similarity with the maize Cat3 gene and possible cis elements and sequence motifs in the maize Cat3 gene were not evident, except for TATA and CAAT motifs. Several sequence motifs found in the promoters of plant seed-specific genes were identified in the 5-upstream non-coding region of the CatA gene. Northern blotting showed that the CatA gene is expressed at high levels in seeds during early development and also in young seedlings. Methyl viologen (paraquat) resulted in the 3-fold induction of the CatA gene in the leaves of young seedlings, whereas abscisic acid, wounding, salicylic acid, and hydrogen peroxide had no or only slight effects.The 1.9 kb 5-upstream fragment (–1559 to +342) of the CatA gene was fused with the Escherichia coli -glucuronidase (GUS) gene and introduced by electroporation into protoplasts prepared from rice suspension-cultured cells, then the transient expression of the GUS gene was examined. Deletion analysis of this chimeric gene suggested that a weak silencer is located in the region between –1564 to –699. Abscisic acid (ABA) at a final concentration of 10–6 M doubled GUS activity in protoplasts electroporated with the chimeric DNAs having 1.9 to 1.2 kb 5-upstream regions. A sequence highly similar to the Sph box, a motif found in genes modulated by ABA, was found at –266 to –254. Deletion of this region however, did not eliminate the responsiveness to ABA. Expression of the chimeric gene in the protoplasts was not enhanced by stress such as low and high temperature, hydrogen peroxide, methyl viologen, salicylic acid, elicitor, and UV light.The chimeric CatA-GUS plasmid DNAs amplified in the methylation-positive strain, E. coli DH5, showed GUS gene activities, whereas all the chimeric DNAs amplified in the methylation-deficient E. coli JM 110 were completely inactive in the presence or absence of ABA in the culture medium. DNA methylation, especially of either one or both of the deoxyadenosines at the two GATC motifs (one in the first exon and the other in the first intron of the rice CatA gene), appeared to be responsible for the CatA promoter activity identified in the transient assay.author for corresondenceThe nucleotide sequence data reported will appear in the DDBJ EMBL and GenBank Nucleotide Sequence Databases under the accession number D29966.  相似文献   
106.
K. ARIHARA, S. OGIHARA, T. MUKAI, M. ITOH AND Y. KONDO. 1996. Fifteen of 353 environmental isolates of lactic acid bacteria consistently showed activity against Listeria monocytogenes, Streptococcus mutans, Actinomyces viscosus , and/or Propionibacterium acnes . Strain T140, isolated from the surface of Japanese pampas grass leaves and identified as Lactobacillus salivarius subsp. salicinius , also had activity against several Lactobacillus species, Staphylococcus aureus and Yersinia enterocolitica . Since the antagonistic factor(s) produced by T140 was sensitive to a proteolytic enzyme, it was concluded that a bacteriocin (named salivacin 140) was involved in the inhibition activity. Strain T140 required a high initial pH (7.5–8.5) in agar plates for bacteriocin production.  相似文献   
107.
The rate of evolution of ethylene by tomato plants was rapidlyincreased by O3 fumigation. The time course of the increasein 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activitywas the same as that in the rate of evolution of ethylene, suggestingthat ACC synthase activity might be a rate-limiting step inthe evolution of ethylene that is caused by O3 fumigation. Therate of the O3-induced evolution of ethylene was increased bythe application of ACC to tomato plants, suggesting the involvementof ACC oxidase in the O3-induced evolution of ethylene. Treatmentof plants with tiron inhibited the evolution of ethane, butnot of ethylene. These results indicated that evolution of ethylenein O3-treated tomato plants might result from enzymatic reactionscatalyzed by both ACC synthase and ACC oxidase, but not fromstimulation by O3 of the peroxidation of lipids mediated byfree radicals. Pretreatment of leaves with aminoethoxyvinylglycine (AVG), aninhibitor of ACC synthase, significantly inhibited the evolutionof ethylene that was induced by O3 and concomitantly reducedthe extent of O3-induced visible damage to leaves. Treatmentwith 2,5-norbonadiene, an inhibitor of the action of ethylene,strongly reduced the extent of visible damage caused by O3,even though it did not suppress the evloution of ethylene. Theseresults indicate that ethylene acts on certain metabolic processesto cause visible damage. (Received September 7, 1995; Accepted December 18, 1995)  相似文献   
108.
Photoinduced lesions in DNA, namely, cyclobutane pyrimidinedimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts[(6-4)photoproducts], in cucumber cotyledons that had been irradiatedwith naturally occurring levels of UV-B (290–320 nm) werequantitated by enzyme-linked immunosorbent assays with monoclonalantibodies specific to each type of photolesion. Induction ofthese photolesions was dependent on temperature and their extentwas reduced by simultaneous irradiation with white light. Thedark repair of both types of photolesion was undetectable. Light-dependentremoval of (6-4)photoproducts was very slow, with 50% removalin 4 h. By contrast, 50% of initial CPDs were removed within15 min. Both photorepair processes were dependent on the intensityof white light and were sensitive to temperature. These resultsindicate that high photolyase activity is present in cucumbercotyledons and that repair activities in cucumber cotyledonsare different from those reported in Arabidopsis, in which (6-4)photoproductsare photorepaired more rapidly than CPDs. (Received October 13, 1995; Accepted December 28, 1995)  相似文献   
109.
The polypeptide encoded by the partial fragment of cDNA of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), PALcDNAl (Osakabe et al., 1995, Plant Sci. 105: 217–226), isolated from Populus kitakamiensis (P. sieboldii x P. grandidentata), was expressed in Escherichia coli cells. The polypeptide was purified and an antiserum raised against it. The antiserum recognized a protein of 77 kDa on nitrocellulose blots after sodium dodecyl sulfate-poly-acrylamide gel electrophoresis of total protein and the partially purified PAL protein from P. kitakamiensis. Moreover,the antiserum recognized a protein on the blot after non-denaturing polyacrylamide gel electrophoresis of P. kitakamiensis proteins and this protein had PAL activity. Furthermore, the antibody inhibited PAL activity of extracts from stem tissues. These results showed that the antiserum against the partial PAL peptide recognized only the PAL subunits in extracts of P. kitakamiensis. Immunolocalization studies of P. kitakamiensis tissues revealed that the PAL protein was specifically localized in the xylem and the phloem fibers and no immunogold signal was found in the epidermis, the cortex, the pith, or the cambium of either stems or leaves.Abbreviations IgG immunoglobulin G - IPTG isopropylthio--d-galactoside - PAL phenylalanine ammonia-lyase The authors thank Dr. Kunio Hata of Nippon Paper Industries Co., Ltd. (Japan) for supplying P. kitakamiensis. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 07406008).  相似文献   
110.
Peroxisome-biogenesis disorders (PBD) are genetically heterogeneous and can be classified into at least ten complementation groups. We recently isolated the cDNA for rat peroxisome assembly factor-2 (PAF-2) by functional complementation using the peroxisome-deficient Chinese-hamster-ovary cell mutant, ZP92. To clarify the novel pathogenic gene of PBD, we cloned the full-length human PAF-2 cDNA that morphologically and biochemically restores peroxisomes of group C Zellweger fibroblasts (the same as group 4 in the Kennedy-Krieger Institute) and identified two pathogenic mutations in the PAF-2 gene in two patients with group C Zellweger syndrome. The 2,940-bp open reading frame of the human PAF-2 cDNA encodes a 980-amino-acid protein that shows 87.1% identity with rat PAF-2 and also restored the peroxisome assembly after gene transfer to fibroblasts of group C patients. Direct sequencing of the PAF-2 gene revealed a homozygous 1-bp insertion at nucleotide 511 (511 insT) in one patient with group C Zellweger syndrome (ZS), which introduces a premature termination codon in the PAF-2 gene, and, in the second patient, revealed a splice-site mutation in intron 3 (IVS3+1G-->A), which skipped exon 3, an event that leads to peroxisome deficiency. Chromosome mapping utilizing FISH indicates that PAF-2 is located on chromosome 6p21.1. These results confirm that human PAF-2 cDNA restores peroxisome of group C cells and that defects in the PAF-2 produce peroxisome deficiency of group C PBD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号