首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   739篇
  免费   37篇
  2022年   5篇
  2021年   8篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   10篇
  2015年   17篇
  2014年   20篇
  2013年   42篇
  2012年   44篇
  2011年   39篇
  2010年   18篇
  2009年   19篇
  2008年   41篇
  2007年   35篇
  2006年   40篇
  2005年   38篇
  2004年   29篇
  2003年   28篇
  2002年   40篇
  2001年   12篇
  2000年   14篇
  1999年   14篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   13篇
  1991年   18篇
  1990年   19篇
  1989年   8篇
  1988年   14篇
  1987年   7篇
  1986年   14篇
  1985年   10篇
  1984年   15篇
  1983年   13篇
  1982年   6篇
  1980年   4篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1974年   10篇
  1973年   4篇
  1971年   8篇
  1970年   6篇
  1969年   5篇
  1966年   3篇
排序方式: 共有776条查询结果,搜索用时 343 毫秒
101.
Tryptophan fluorescence was used to analyze binding of ligands to human pyruvate dehydrogenase isoform 2 (PDHK2) and to demonstrate effects of ligand binding on distal structure of PDHK2 that is required for binding to the inner lipoyl domain (L2) of the dihydrolipoyl acetyltransferase. Ligand-altered binding of PDHK2 to L2 and effects of specific ligands on PDHK2 oligomeric state were characterized by analytical ultracentrifugation. ATP, ADP, and pyruvate markedly quenched the tryptophan fluorescence of PDHK2 and gave maximum quenching/L0.5 estimates: approximately 53%/3 microM for ATP; approximately 49%/15 microM for ADP; and approximately 71%/approximately 590 microM for pyruvate. The conversion of Trp-383 to phenylalanine completely removed ATP- and ADP-induced quenching and > or = 80% of the absolute decrease in fluorescence due to pyruvate. The W383F-PDHK2 mutant retained high catalytic activity. Pyruvate, added after ADP, quenched Trp fluorescence with an L0.5 of 3.4 microM pyruvate, > or = 150-fold lower concentration than needed with pyruvate alone. ADP-enhanced binding of pyruvate was maintained with W383F-PDHK2. Binding of PDHK2 dimer to L2 is enhanced when L2 are housed in oligomeric structures, including the glutathione S-transferase (GST)-L2 dimer, and further strengthened by reduction of the lipoyl groups (GST-L2(red)) (Hiromasa and Roche (2003) J. Biol. Chem. 278, 33681-33693). Binding of PDHK2 to GST-L2(red) was modestly hindered by 200 microM level of ATP or ADP or 5.0 mM pyruvate; a marked change to nearly complete prevention of binding was observed with ATP or ADP plus pyruvate at only 100 microM levels, and these conditions caused PDHK2 dimer to associate to a tetramer. These changes should make major contributions to synergistic inhibition of PDHK2 activity by ADP and pyruvate. Ligand-induced changes that interfere with PDHK2 binding to GST-L2(red) may involve release of an interdomain cross arm between PDHK2 subunits in which Trp-383 plays a critical anchoring role.  相似文献   
102.
Lowenstein CJ  Tsuda H 《Biological chemistry》2006,387(10-11):1377-1383
Vascular injury triggers endothelial exocytosis of granules, releasing pro-inflammatory and pro-thrombotic mediators into the blood. Nitric oxide (NO) and reactive oxygen species (ROS) limit vascular inflammation and thrombosis by inhibiting endothelial exocytosis. NO decreases exocytosis by regulating the activity of the N-ethylmaleimide-sensitive factor (NSF), a central component of the exocytic machinery. NO nitrosylates specific cysteine residues of NSF, thereby inhibiting NSF disassembly of the soluble NSF attachment protein receptor (SNARE). NO also modulates exocytosis of other cells; for example, NO regulates platelet activation by inhibiting alpha-granule secretion from platelets. Other radicals besides NO can regulate exocytosis as well. For example, H(2)O(2) inhibits exocytosis by oxidizing NSF. Using site-directed mutagenesis, we have defined the critical cysteine residues of NSF, and found that one particular cysteine residue, C264, renders NSF sensitive to oxidative stress. Since radicals such as NO and H(2)O(2) inhibit NSF and decrease exocytosis, NSF may act as a redox sensor, modulating exocytosis in response to changes in oxidative stress.  相似文献   
103.
The N' gene of Nicotiana sylvestris and L genes of Capsicum plants confer the resistance response accompanying the hypersensitive response (HR) elicited by tobamovirus coat proteins (CP) but with different viral specificities. Here, we report the identification of the N' gene. We amplified and cloned an N' candidate using polymerase chain reaction primers designed from L gene sequences. The N' candidate gene was a single 4143 base pairs fragment encoding a coiled-coil nucleotide-binding leucine-rich repeat (LRR)-type resistance protein of 1,380 amino acids. The candidate gene induced the HR in response to the coexpression of tobamovirus CP with the identical specificity as reported for N'. Analysis of N'-containing and tobamovirus-susceptible N. tabacum accessions supported the hypothesis that the candidate is the N' gene itself. Chimera analysis between N' and L(3) revealed that their LRR domains determine the spectrum of their tobamovirus CP recognition. Deletion and mutation analyses of N' and L(3) revealed that the conserved sequences in their C-terminal regions have important roles but contribute differentially to the recognition of common avirulence proteins. The results collectively suggest that Nicotiana N' and Capsicum L genes, which most likely evolved from a common ancestor, differentiated in their recognition specificity through changes in the structural requirements for LRR function.  相似文献   
104.
Th17 cells, which have been implicated in autoimmune diseases, require STAT3 signaling activated by IL-6 or IL-23 for their development. Other Th1 and Th2 cytokines such as IL-2, IFN-γ and IL-4 strongly suppress Th17 development. Recently, CP-690,550 (tofacitinib), originally developed as a JAK3 inhibitor, has been shown to be effective in phase III clinical trials of rheumatoid arthritis and collagen-induced arthritis (CIA) models, but the precise mechanism of the effect, especially with respect to Th17 cells, is poorly understood. To our surprise, a low dose CP-690,550 was found to accelerate the onset of experimental autoimmune encephalomyelitis (EAE) at a concentration that suppressed CIA. At an early stage after immunization, more IL-17 production was observed in 15mg/kg body weight CP-690,550-treated mice than in untreated mice. In vitro, CP-690,550 inhibited both Th1 and Th2 development, while promoting Th17 differentiation at 10-50nM concentrations. Enhancement of Th17 by CP-690,550 is probably due to suppression of IL-2 signaling, because anti-IL-2 antibodies cancel the Th17-promoting effect of CP-690,550. CP-690,550 selectively inhibited IFN--induced STAT1, IL-4-induced STAT6 and IL-2-induced STAT5 at 3-30nM, while suppression of IL-6-induced STAT3 phosphorylation required a concentration greater than 100nM. In HEK293T cells, CP-690,550 less effectively suppressed JAK1-mediated STAT3 phosphorylation compared with JAK3. These results suggest that CP-690,550 has a different effects among JAKs and STATs, thereby affecting helper T cell differentiation, and murine autoimmune disease models.  相似文献   
105.
106.
Green fluorescent protein (GFPuv) has been widely used as a reporter fused to individual targeting sequences. However, its state in liquid and its effect on other proteins are still unclear. The conformational polymorphisms of glutathione-S-transferase-green fluorescent protein (GST-GFPuv), GFPuv and GST were analyzed by native polyacrylamide gel, indicating that GST was in many different states while GFPuv and GST-GFPuv were only in four and two slightly different states. Four different circular dichroism spectra were obtained from the GFPuv polymorphisms. The single molecular behavior of GST-GFPuv and GFPuv was also characterized by MALDI-TOF MS. Thus, we demonstrated that: (1) there might be four different structural polymorphisms for the native GFPuv; (2) GFPuv could reduce its partner’s polymorphism as a fusion protein. Although GFPuv had many merits as a reporter, its unreliability was found in the study.  相似文献   
107.
108.
109.
The glutathione S-transferase (GST)-fused protein expression system has been extensively used to generate a large quantity of proteins and has served for functional analysis in vitro. In this study, we developed a novel approach for the efficient intracellular delivery of GST-fused proteins into living cells to expand their usefulness up to in vivo use. Since protein cationization techniques are powerful strategies for efficient intracellular uptake by adsorptive-mediated endocytosis, GST-fused proteins were cationized by forming a complex with a polycationic polyethylenimine (PEI)-glutathione conjugate. On screening of protein transduction, optimized PEI-glutathione conjugate for protein transduction was characterized by a partly oligomerized mixture of PEI with average molecular masses of 600 (PEI600) modified with multiple glutathiones, which could have sufficient avidity for GST. Furthermore, enhanced endosomal escape of transduced GST-fused proteins was observed when they were delivered with a glutathione-conjugated PEI600 derivative possessing a hydroxybutenyl moiety. These results were confirmed by both intracellular confocal imaging of GST-fused green fluorescent protein and activation of an endogenous growth signal transduction pathway by a GST-fused constitutively active mutant of a kinase protein. These PEI-glutathione conjugates seem to be convenient molecular tools for protein transduction of widely used GST-fused proteins.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号