首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2075篇
  免费   100篇
  国内免费   2篇
  2022年   7篇
  2021年   19篇
  2020年   15篇
  2019年   18篇
  2018年   31篇
  2017年   16篇
  2016年   38篇
  2015年   77篇
  2014年   73篇
  2013年   144篇
  2012年   149篇
  2011年   120篇
  2010年   74篇
  2009年   101篇
  2008年   132篇
  2007年   145篇
  2006年   133篇
  2005年   140篇
  2004年   132篇
  2003年   131篇
  2002年   125篇
  2001年   16篇
  2000年   11篇
  1999年   17篇
  1998年   28篇
  1997年   27篇
  1996年   26篇
  1995年   23篇
  1994年   11篇
  1993年   23篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   5篇
  1988年   10篇
  1987年   16篇
  1986年   6篇
  1985年   13篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   5篇
  1976年   7篇
  1975年   5篇
  1974年   3篇
  1965年   3篇
  1963年   2篇
排序方式: 共有2177条查询结果,搜索用时 109 毫秒
201.
Phosphoinositide-specific phospholipase C (PLC) is a key enzyme in phosphoinositide turnover and is involved in a variety of physiological functions. We analyzed PLCdelta1 knockout mice and found that PLCdelta1 is required for the maintenance of skin homeostasis. However, there were no remarkable abnormalities except hair loss and runting in PLCdelta1 knockout mice, even though PLCdelta1 is broadly distributed. Here, we report that mice lacking both PLCdelta1 and PLCdelta3 died at embryonic day 11.5 (E11.5) to E13.5. PLCdelta1/PLCdelta3 double-knockout mice exhibited severe disruption of the normal labyrinth architecture in the placenta and decreased placental vascularization, as well as abnormal proliferation and apoptosis of trophoblasts in the labyrinth area. Furthermore, PLCdelta1/PLCdelta3 double-knockout embryos supplied with a normal placenta by the tetraploid aggregation method survived beyond E14.5, clearly indicating that the embryonic lethality is caused by a defect in trophoblasts. On the basis of these results, we conclude that PLCdelta1 and PLCdelta3 are essential in trophoblasts for placental development.  相似文献   
202.
Discrepancy between GLUT4 translocation and glucose uptake after ischemia   总被引:4,自引:0,他引:4  
Objective: Low-flow ischemia results in glucose transporter translocation and in increased glucose uptake. After total ischemia in rat heart, we found no increase in glucose uptake. Here we test the hypothesis that total ischemia is associated with decreased activation of GLUT4 despite translocation. Methods: Isolated working hearts (n=70, Sprague–Dawley rats) were perfused for 70 min at physiological workload with Krebs–Henseleit buffer containing [2-3H]glucose (5 mmol/l, 0.05 μCi/ml) with either oleate (0.4 mmol/l, 1%BSA) or pyruvate (5 mmol/l, 1%BSA). After 20 min, hearts were subjected to 15 min of total ischemia followed by 35 min of reperfusion. We measured glucose uptake and intracellular free glucose (IFG) using [2-3H]glucose and [14C]sucrose, and determined the distribution of GLUT4 by colocalization immunofluorescence with Na–K ATP-ase. Results: Cardiac power was 10.1 ± 0.90 mW before ischemia and did not differ between groups. Recovery was the same in both groups (55.7 ± 24.8$%). Glucose uptake did not differ between groups before ischemia, and did not increase during reperfusion. Despite evidence of GLUT4 translocation after reperfusion in both groups, IFG did not increase compared with before ischemia. Conclusion: We conclude that there is a discrepancy between glucose transporter availability and glucose uptake after ischemia, which may be due to inhibition of GLUT4 in the plasma membrane. (Mol Cell Biochem 278: 129–137, 2005)  相似文献   
203.
Leptothrix cholodnii is an aerobic sheath-forming bacterium often found in oligotrophic and metal-rich aquatic environments. The sheath of this bacterium was isolated by selectively lysing the cells. Glycine and cysteine were the major amino acids of the sheath. The sheath was readily dissolved in hydrazine, and a polysaccharide substituted with cysteine was recovered from the solution. Galactosamine, glucosamine and galacturonic acid were detected in the hydrazinolysate by gas liquid chromatography analysis. FAB-MS analysis of the hydrazinolysate suggested a sugar sequence of HexN-GalA-HexN-HexN. Methylation linkage analysis revealed the presence of 4-linked GalA, 3-linked HexN and 4-linked HexN. The sulfhydryl groups of the sheath were used for labeling with the fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F). The labeled sheath (ABD-sheath) was partially hydrolyzed and three fluorescent fragments were purified by HPLC. One of them was identified as ABD-cysteine. The second one was found to be the ABD-cysteine tetramer. Another fragment was indicated to be a pentasaccharide substituted with ABD-cysteine by nuclear magnetic resonance (NMR) analysis. It can be assumed that the polysaccharide and peptide moieties of the sheath are connected by a cysteine residue. NMR analysis of the hydrazinolysate revealed that the polysaccharide moiety of the sheath was constructed from a pentasaccharide repeating unit containing 2-amino-2-deoxygalacturonic acid (GalNA), as shown below. -->4)-alpha-GalNA-(1-->4)-alpha-D-GalN(p)-(1-->4)-alpha-D-GalA(p)-(1-->4)-beta-D-GlcN(p)-(1-->3)-beta-D-GalN(p)-(1-->.  相似文献   
204.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   
205.
206.
BACKGROUND: Helicobacter pylori survival in a hostile acidic environment is known to be caused by its production of urease, which is not released by known secretion pathways. It has been proposed that H. pylori cells undergo spontaneous autolysis during cultivation and that urease becomes surface-associated only concomitant with bacterial autolysis. The aim of this study was to elucidate mechanisms by which H. pylori cells undergo autolysis during cultivation. MATERIALS AND METHODS: Autolysis of H. pylori KZ109 cells was estimated by measuring the turbidity of the culture, by detection of cytoplasmic protein release into the culture supernatant and by scanning electron microscopic observation of H. pylori cells during cultivation. An autolysis-inducing factor (AIF) was partially purified from the culture supernatant by a partition method using ethyl acetate. RESULTS: Bacterial turbidity of KZ109 cells was drastically decreased after late-log phase accompanying release of urease and HspB into the extracellular space. Concomitantly, cell lytic activity was detected in the culture supernatant. Scanning electron microscopic observation suggested that partially purified AIF induced cell lysis. It was also shown that the AIF is different from other autolytic enzymes or substances so far reported. CONCLUSIONS: This study demonstrated the presence of the peptidergic autolytic substances in the culture supernatant of H. pylori KZ109 cells. The results of this study should be useful for further studies aimed at elucidation of the strategy of survival of H. pylori in the gastric environment and elucidation of the mechanisms of pathogenesis induced by H. pylori.  相似文献   
207.
208.
209.
210.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号