首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2108篇
  免费   100篇
  国内免费   2篇
  2022年   9篇
  2021年   17篇
  2020年   15篇
  2019年   18篇
  2018年   34篇
  2017年   18篇
  2016年   38篇
  2015年   78篇
  2014年   72篇
  2013年   151篇
  2012年   148篇
  2011年   123篇
  2010年   74篇
  2009年   100篇
  2008年   130篇
  2007年   146篇
  2006年   133篇
  2005年   143篇
  2004年   133篇
  2003年   131篇
  2002年   127篇
  2001年   16篇
  2000年   16篇
  1999年   18篇
  1998年   29篇
  1997年   28篇
  1996年   26篇
  1995年   25篇
  1994年   11篇
  1993年   22篇
  1992年   11篇
  1991年   11篇
  1990年   12篇
  1989年   5篇
  1988年   13篇
  1987年   17篇
  1986年   6篇
  1985年   13篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   5篇
  1976年   7篇
  1975年   5篇
  1974年   3篇
  1965年   3篇
  1963年   2篇
排序方式: 共有2210条查询结果,搜索用时 15 毫秒
61.
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7′,8′ position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.Carotenoids, a diverse group of pigments widely distributed in nature, fulfill a variety of important functions in plants and play a critical role in human nutrition and health (Schwartz et al., 1997; Cunningham and Gantt, 1998; Havaux, 1998; Krinsky et al., 2003; Ledford and Niyogi, 2005). The pathway of carotenoid biosynthesis has been well documented in various plant species, including Arabidopsis (Arabidopsis thaliana; Park et al., 2002), tomato (Lycopersicon esculentum; Isaacson et al., 2002), pepper (Capsicum annuum; Bouvier et al., 1998), citrus (Citrus spp.; Kato et al., 2004, 2006; Rodrigo et al., 2004; Rodrigo and Zacarías, 2007; Kato, 2012; Zhang et al., 2012a), and apricot (Prunus armenaica; Kita et al., 2007). Genes encoding the enzymes in the carotenoid biosynthetic pathway have been cloned, and their expression profiles have also been characterized (Fig. 1). As carotenoids contain a series of conjugated double bonds in the central chain, they can be oxidatively cleaved in a site-specific manner (Mein et al., 2011). The oxidative cleavage of carotenoids not only regulates their accumulation but also produces a range of apocarotenoids (Walter et al., 2010). In higher plants, many different apocarotenoids derive from the cleavage of carotenoids and have important metabolic functions, such as plant hormones, pigments, aroma and scent compounds, as well as signaling compounds (Fig. 1). A well-known example is abscisic acid, which is a C15 compound derived from the cleavage of the 11,12 double bond of 9-cis-violaxanthin and 9′-cis-neoxanthin (Schwartz et al., 1997; Tan et al., 1997; Cutler and Krochko, 1999; Chernys and Zeevaart, 2000; Giuliano et al., 2003).Open in a separate windowFigure 1.Carotenoid and apocarotenoid metabolic pathway in plants. GGPP, Geranylgeranyl diphosphate. Enzymes, listed here from top to bottom, are named according to the designation of their genes: PSY, phytoene synthase; PDS, Phytoene desaturase; ZDS, ζ-carotene desaturase; ZISO, 15-cis-ζ-carotene isomerase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; HYe, ε-ring hydroxylase; HYb, β-ring hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin deepoxidase; NCED, 9-cis-epoxycarotenoid dioxygenase.Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage of carotenoids (Ryle and Hausinger, 2002). CCDs are nonheme iron enzymes present in plants, bacteria, and animals. In plants, CCDs belong to an ancient and highly heterogenous family (CCD1, CCD4, CCD7, CCD8, and 9-cis-epoxycarotenoid dioxygenases [NCEDs]). The similarity among the different members is very low apart from four strictly conserved His residues and a few Glu residues (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, the CCD family contains nine members (CCD1, NCED2, NCED3, CCD4, NCED5, NCED6, CCD7, CCD8, and NCED9), and orthologs in other plant species are typically named according to their homology with an Arabidopsis CCD (Huang et al., 2009). In our previous study, the functions of CitCCD1, CitNCED2, and CitNCED3 were investigated in citrus fruits (Kato et al., 2006). The recombinant CitCCD1 protein cleaved β-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9,10 and 9′,10′ positions and 9-cis-violaxanthin at the 9′,10′ position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11,12 position to form xanthoxin, a precursor of abscisic acid (Kato et al., 2006). To date, information on the functions of other CCDs in citrus fruits remains limited, while the functions of CCD7 and CCD8, as well as NCED5, NCED6, and NCED9, in Arabidopsis have been characterized (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, CCD7 cleaves all-trans-β-carotene at the 9′,10′ position to form all-trans-β-apo-10′-carotenal. All-trans-β-apo-10′-carotenal is further shortened by AtCCD8 at the 13,14 position to produce β-apo-13-carotenone (Alder et al., 2012). NCED5, NCED6, and NCED9 cleave 9-cis-violaxanthin at the 11,12 position to form xanthoxin (Tan et al., 2003). Compared with other CCDs, the function of CCD4 is poorly understood. In Chrysanthemum morifolium, CmCCD4a contributed to the white color formation by cleaving carotenoids into colorless compounds (Ohmiya et al., 2006). Recently, it has been reported that CsCCD4, CmCCD4a, and MdCCD4 could cleave β-carotene to yield β-ionone (Rubio et al., 2008; Huang et al., 2009).β-Citraurin, a C30 apocarotenoid, is a color-imparting pigment responsible for the reddish color of citrus fruits (Farin et al., 1983). In 1936, it was first discovered in Sicilian oranges (Cual, 1965). In citrus fruits, the accumulation of β-citraurin is not a common event; it is only observed in the flavedos of some varieties during fruit ripening. The citrus varieties accumulating β-citraurin are considered more attractive because of their red-orange color (Ríos et al., 2010). Although more than 70 years have passed since β-citraurin was first identified, the pathway of its biosynthesis is still unknown. As its structure is similar to that of β-cryptoxanthin and zeaxanthin, β-citraurin was presumed to be a degradation product of β-cryptoxanthin or zeaxanthin (Oberholster et al., 2001; Rodrigo et al., 2004; Ríos et al., 2010; Fig. 1). To date, however, the specific cleavage reaction producing β-citraurin has not been elucidated. In this study, we found that the CitCCD4 gene was involved in the synthesis of β-citraurin, using two citrus varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. To confirm the role of the CitCCD4 gene further, functional analyses of the CitCCD4 enzyme were performed in vivo and in vitro. Additionally, the regulation of β-citraurin content and CitCCD4 gene expression in response to ethylene and red light-emitting diode (LED) light treatments was also examined. This study, to our knowledge, is the first to investigate the biosynthesis of β-citraurin in citrus fruits. The results might provide new strategies to enhance the nutritional and commercial qualities of citrus fruits.  相似文献   
62.
63.
We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics.  相似文献   
64.
To improve the efficacy of the conformationally restricted BACE1 inhibitors, structural modifications were investigated using two strategies: (a) modification of the terminal aromatic ring and (b) insertion of a spacer between the aromatic rings. In the latter approach, another type of inhibitor 17 bearing an ethylene spacer between two aromatic rings was found to exhibit good BACE1 inhibitory activity, while the corresponding conformationally unrestricted compound 25 showed no activity. This result revealed an interesting effect of a conformational restriction with a cyclopropane ring.  相似文献   
65.
Aldehyde dehydrogenases (ALDHs), enzymes responsible for detoxification and retinoic acid biosynthesis, are considered a potent functional stem cell marker of normal and malignant cells in many tissues. To date, however, there are no available data on ALDH distributions and functions in oral mucosa. This study aims to clarify the levels and types of ALDH expression using immunohistochemistry with accompanying mRNA expression as well as an ALDEFLUOR assay, and to assess phenotypic and histological changes after manipulation of the ALDH activity of oral keratinocytes to increase the potency of a tissue-engineered oral mucosa by a specific ALDH inhibitor, diethylaminobenzaldehyde (DEAB), together with small interfering RNA of ALDH1A3 and ALDH3A1. Results showed the mRNA and cytoplasmic protein expression of ALDH1A3 and ALDH3A1 to be mostly localized in the upper suprabasal layer although no ALDH1A1 immunoreaction was detected throughout the epithelium. Oral keratinocytes with high ALDH activity exhibited a profile of differentiating cells. By pharmacological inhibition, the phenotypic analysis revealed the proliferating cell-population shifting to a more quiescent state compared with untreated cells. Furthermore, a well-structured epithelial layer showing a normal differentiation pattern and a decrease in Ki-67 immunopositive basal cells was developed by DEAB incubation, suggesting a slower turnover rate efficient to maintain undifferentiated cells. Histological findings of a regenerated oral epithelium by ALDH1A3 siRNA were similar to those when treated with DEAB while ALDH3A1 siRNA eradicated the epithelial regenerative capacity. These observations suggest the effects of phenotypic and morphological alterations by DEAB on oral keratinocytes are mainly consequent to the inhibition of ALDH1A3 activity.  相似文献   
66.
Eight α-N-acyl colistin nonapeptide derivatives including three aliphatic, four aromatic and one alicyclic derivatives were synthesized by the reaction of colistin nonapeptide with corresponding acid chlorides. This acylation reaction was carried out under the condition kept restrictedly at pH 5,0 in order to introduce an acyl group only to α-amino group but not to γ-amino group existing in a colistin nonapeptide molecule. Synthetic method and several physico-chemical natures of these acyl colistin nonapeptide derivatives are given in this paper.

All of the acylated derivatives thus synthesized exhibited characteristic antimicrobial activities. Antimicrobial spectra were substantially based upon a gram-negative type and not so much altered by chemical structures of acyl groups which were considerably differentiated from each other such as cyclic or chain form. Thus, more possible response of carbon size than its structure to the antimicrobial effectiveness was inferred. In spite of almost no toxicity and feeble antimicrobial activity of colistin nonapeptide itself, these acylated colistin nonapeptide derivatives showed a toxicity against mice at a dose of 16.9~70 mg/kg in LD50, which, however, was inferior to the toxicity of colistin sulfate, possibly correspondent to their much weaker antimicrobial activities, as a whole. Hence, it seems likely that acyl part of these acylated colistin nonapeptide derivatives including that of colistin is seriously responsible for the biological activities.  相似文献   
67.
68.
A mutant of Streptomyces fradiae which requires oleic acid for neomycin formation was isolated and the effects of exogenous fatty acids and other additives on the formation of neomycin were studied. Palmitic acid and high concentration of sodium ions could replace oleic acid in neomycin formation. The fatty acid spectrum of the mutant strain ST–5B was quite different from that of the parent strain 3123. The major fatty acid components of the mutant and the parent were anteiso 15:0 and iso 16: 0, respectively. However the fatty acid composition of the mutant was changed from the anteiso 15: 0-type to the parental iso 16: 0-type by the supplement of oleic acid or high concentration of sodium ions in the medium. In the case of palmitic acid, the major fatty acid component of the mutant cells was changed from anteriso 15: 0 to normal 16:0. The role of these additives in neomycin formation by the mutant is discussed.  相似文献   
69.
A multi-channel continuous-flow analyzer equipped with biosensing devices was developed for multi-component measurement and its use in automating routine analysis was evaluated.

Biosensing was achieved by the aid of an immobilized enzyme reactor installed in the channel, and the channel switching process for the sensing of a different compound was made by using a column-switching rotary valve. Another rotary valve was used for auto-sampling. Both of the two rotary valves were interfaced to a system controller and work conjugatively in a programmed manner. Signal subtraction between different channels was found to be more precise compared with the multi-channel flow-injection analysis method, which is of merit for an analysis utilizing enzyme relay reaction (as for sucrose analysis) or for background signal subtraction. Glucose, lactate, and sucrose content in real samples were measured automatically with high reproducibility, and the results agree well with the kit method.  相似文献   
70.
The leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) gene of Clostridium thermoaceticum was cloned and expressed in Escherichia coli C600 with a vector plasmid, pICD242, which was constructed from pBR322 and the leucine dehydrogenase gene derived from C. thermoaceticum. The enzyme overproduced in the clone was purified about 12 fold to homogeneity by heat treatment and another two steps with a yield of 46%. The enzyme of E. coli- pICD242 was immunochemically identical with that of C. thermoaceticum. The enzyme has a molecular weight of about 350,000 and consists of six subunits identical in molecular weight (56,000). The enzyme is not inactivated by heat treatment: at pH 7.2 and 75°C for 15 min; at 55°C and various pH’s between 6.0 and 10.0 for 10 min. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their 2-oxo analogues in the presence of NAD+ and NADH, respectively. The pro-S hydrogen at C-4 of the dihydronicotin- amide ring of NADH is exclusively transferred to the substrate; the enzyme is B stereospecific. The enzymological properties are very similar to those of the Bacillus stearothermophilus enzyme [T. Ohshima, S. Nagata and K. Soda, Arch. Microbiol., 141, 407 (1985)].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号