首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2109篇
  免费   110篇
  国内免费   2篇
  2022年   8篇
  2021年   18篇
  2020年   15篇
  2019年   18篇
  2018年   34篇
  2017年   16篇
  2016年   40篇
  2015年   76篇
  2014年   74篇
  2013年   147篇
  2012年   147篇
  2011年   119篇
  2010年   77篇
  2009年   107篇
  2008年   131篇
  2007年   145篇
  2006年   130篇
  2005年   137篇
  2004年   138篇
  2003年   133篇
  2002年   127篇
  2001年   15篇
  2000年   16篇
  1999年   21篇
  1998年   28篇
  1997年   27篇
  1996年   26篇
  1995年   28篇
  1994年   12篇
  1993年   22篇
  1992年   11篇
  1991年   11篇
  1990年   13篇
  1989年   7篇
  1988年   11篇
  1987年   18篇
  1986年   8篇
  1985年   12篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   12篇
  1980年   12篇
  1979年   9篇
  1978年   5篇
  1976年   7篇
  1975年   5篇
  1974年   3篇
  1965年   3篇
  1963年   2篇
排序方式: 共有2221条查询结果,搜索用时 640 毫秒
141.
Abe H  Shimma Y  Jigami Y 《Glycobiology》2003,13(2):87-95
A glycosyltransferase was fused to the yeast cell wall protein Pir, which forms the Pir1-4 protein family and is incorporated into the cell wall by an unknown linkage to be displayed at the yeast cell surface. We first expressed the PIR1-HA-gma12+ fusion, in which gma12+ encodes alpha-1,2-galactosyltransferase from the fission yeast Schizosaccharomyces pombe under the Saccharomyces cerevisiae GAPDH promoter. The alpha-1,2-galactosyltransferase activity was detected at the surface of the intact cells that produce Pir1-HA-Gma12 fusion. To further demonstrate sequential oligosaccharide synthesis, two plasmids containing PIR1-HA-KRE2 and PIR2-FLAG-MNN1 fusion genes were constructed in which KRE2 and MNN1 encode alpha-1,2-mannosyltransferase and alpha-1,3-mannosyltransferase from S. cerevisiae, respectively. The intact yeast cells transformed with these two plasmids added mannoses initially with an alpha-1,2 linkage and subsequently with an alpha-1,3 linkage to the alpha-1,2-mannobiose acceptor in the presence of a GDP-mannose donor, demonstrating that Pir1 and Pir2 can be used as anchors to simultaneously immobilize several glycosyltransferases at the yeast cell surface. Based on the high acceptor specificity of glycosyltransferases, we propose a simple in vitro method for oligosaccharide synthesis using the yeast intact cell as a biocatalyst.  相似文献   
142.
Ideo H  Seko A  Ishizuka I  Yamashita K 《Glycobiology》2003,13(10):713-723
Galectin-8 is a member of the galectin family and has two tandem repeated carbohydrate recognition domains (CRDs). We determined the binding specificities of galectin-8 and its two CRDs for oligosaccharides and glycosphingolipids using ELISA and surface plasmon resonance assays. Galectin-8 had much higher affinity for 3'-O-sulfated or 3'-O-sialylated lactose and a Lewis x-containing glycan than for oligosaccharides terminating in Galbeta1-->3/4GlcNAc. This specificity was mainly attributed to the N-terminal CRD (N-domain), whereas the C-terminal CRD (C-domain) had only weak affinity for a blood group A glycan. The N-domain bound not only to oligosaccharides but also to glycosphingolipids including sulfatide (SM4 s), SM3, sialyl Lc4Cer, SB1a, GD1a, GM3, and sialyl nLc4Cer, suggesting that the N-domain recognizes a 3-O-sulfated or 3-O-sialylated Gal residue. The substitution of the C-3 of the Gal residue in lactose or N-acetyllactosamine with sulfate increased the degree of recognition by galectin-8 more potently than substitution with sialic acid. This is the first demonstration that galectin-8 binds to specific sulfated or sialylated glycosphingolipids with high affinity (KD approximately 10-8-10-9 M). When the Gln47 residue of the N-domain was converted to Ala47, the specific affinity for sulfated or sialylated glycans was selectively lost, indicating that this Gln47 plays important roles for binding to Neu5Acalpha2-->3Gal or SO3--->3Gal residues. The binding ability of galectin-8 to membrane-associated GM3 was confirmed using CHO cells, which predominantly express GM3. Binding of CHO cells to the mutein was significantly lower than to the N-domain.  相似文献   
143.
A general method for alpha-selective glycosylation with 5-thioglucopyranosyl donors followed by efficient deprotection of the resulting products was developed. This methodology was utilized in the synthesis of an isomaltotetraoside analogue.  相似文献   
144.
Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17α,20β-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes. Received: 10 February 2000 / Accepted: 25 April 2000  相似文献   
145.
Intravascular routes of administration can provide a means to target gene- and virus-based therapies to multiple tumor foci located within an organ, such as the brain. However, we demonstrate here that rodent plasma inhibits cell transduction by replication-conditional (oncolytic) herpes simplex viruses (HSV), replication-defective HSV, and adenovirus vectors. In vitro depletion of complement with mild heat treatment or in vivo depletion by treatment of athymic rats with cobra venom factor (CVF) partially reverses this effect. Without CVF, inhibition of cell infection by HSV is observed at plasma dilution as high as 1:32, while plasma from CVF-treated animals displays anti-HSV activity at lower dilutions (1:8). When applied to the therapy of intracerebral brain tumors, in vivo complement depletion facilitates the initial infection (assayed at the 2-day time point) by an intra-arterial replication-conditional HSV of tumor cells, located within three separate and distinct human glioma masses. However, at the 4-day time point, no propagation of HSV from initially infected tumor cells could be observed. Previously, we have shown that the immunosuppressive agent, cyclophosphamide (CPA), facilitates the in vivo propagation of an oncolytic HSV, delivered intravascularly, within infected multiple intracerebral masses, by inhibition of both innate and elicited anti-HSV neutralizing antibody response (K. Ikeda et al., Nat. Med. 5:881-889, 1999). In this study, we thus show that the addition of CPA to the CVF treatment results in a significant increase in viral propagation within infected tumors, measured at the 4-day time period. The concerted action of CVF and CPA significantly increases the life span of athymic rodents harboring three separate and large glioma xenografts after treatment with intravascular, oncolytic HSV. Southern analysis of viral genomes analyzed by PCR reveals the presence of the oncolytic virus in the brains, livers, spleens, kidneys, and intestine of treated animals, although none of these tissues displays evidence of HSV-mediated gene expression. In light of clinical trials of oncolytic HSV for malignant brain tumors, these findings suggest that antitumor efficacy may be limited by the host innate and elicited humoral responses.  相似文献   
146.
147.
Killer strain of Kluyveromyces lactis was constructed to prevent the aerobic deterioration of silage by disruption of KlPCK1 gene encoding phosphoenolpyruvate carboxykinase (PEPCK). The disruptants are defective in their ability of growth on lactic acid as a sole carbon source. The PEPCK activity was also deficient in the disruptants. The growth rate on lactose medium and the killing activity were equal to those of the parental strain. © Rapid Science Ltd. 1998  相似文献   
148.
Inhibitors of -oxidation on the synthesis of glycolipid biosurfactant, mannosylerythritol lipid (MEL), were used to clarify the fatty acid metabolism of MEL in Candida antarctica. 2-Bromooctanoic acid drastically inhibited the lipid synthesis under growing- and resting-cell conditions; moreover, the degree of the inhibition increased along with increases in both the inhibitor concentration and the chain-length of the fatty acid substrate used. These results clearly provide additional support for the essential contribution of the mammalian type of 'chain-shortening pathway' (partial -oxidation) to the biosynthesis of the extracellular glycolipids. © Rapid Science Ltd. 1998  相似文献   
149.
Using a combination of column chromatography and gel electrophoresis,we have found that acid phosphatase in cotyledons of Vigna mungoseedlings is composed of at least six forms (Ia1, Ia2, Ib1,Ib2, IIa and IIb). We purified one of the major forms, Ia1,as a polypeptide of 53 kDa. Using an antiserum raised againstthe enzyme Ia1, we examined the immunological relationshipsbetween the multiple forms from cotyledons and the distributionof the enzyme in organs of maturing and germinating seeds. (Received December 25, 1989; Accepted July 11, 1990)  相似文献   
150.
Secondary bile acid-producing bacteria were isolated from human feces to improve our appreciation of the functional diversity and redundancy of the intestinal microbiota. In total, 619 bacterial colonies were isolated using a nutrient-poor agar medium and the level of secondary bile acid formation was examined in each by a liquid culture, followed by thin-layer chromatography. Of five strains analyzed by 16S rRNA gene sequencing and biochemical testing, one was identified as Bacteroides intestinalis AM-1, which was not previously recognized as a secondary bile-acid producer. GC-MS revealed that B. intestinalis AM-1 converts cholic acid (CA) and chenodeoxycholic acid into their 7-oxo derivatives, 7-oxo-deoxycholic acid (7-oxo-DCA) and 7-oxo-lithocholic acid, respectively. Thus, B. intestinalis AM-1 possesses 7α-hydroxysteroid dehydrogenase (7α-HSDH) activity. In liquid culture, B. intestinalis AM-1 showed a relatively higher productivity of 7-oxo-DCA than Escherichia coli HB101 and Bacteroides fragilis JCM11019T, which are known to possess 7α-HSDH activity. The level of 7α-HSDH activity was higher in B. intestinalis AM-1 than in the other two strains under the conditions tested. The 7α-HSDH activity in each of the three strains is not induced by CA; instead, it is regulated in a growth phase-dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号