首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2269篇
  免费   108篇
  国内免费   6篇
  2383篇
  2023年   5篇
  2022年   13篇
  2021年   18篇
  2020年   15篇
  2019年   19篇
  2018年   33篇
  2017年   20篇
  2016年   40篇
  2015年   84篇
  2014年   76篇
  2013年   159篇
  2012年   152篇
  2011年   133篇
  2010年   78篇
  2009年   106篇
  2008年   149篇
  2007年   151篇
  2006年   133篇
  2005年   147篇
  2004年   137篇
  2003年   139篇
  2002年   138篇
  2001年   26篇
  2000年   24篇
  1999年   29篇
  1998年   31篇
  1997年   27篇
  1996年   30篇
  1995年   23篇
  1994年   11篇
  1993年   25篇
  1992年   19篇
  1991年   11篇
  1990年   16篇
  1989年   10篇
  1988年   13篇
  1987年   18篇
  1986年   9篇
  1985年   17篇
  1984年   7篇
  1983年   10篇
  1982年   6篇
  1981年   12篇
  1980年   10篇
  1979年   8篇
  1978年   7篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
  1965年   3篇
排序方式: 共有2383条查询结果,搜索用时 12 毫秒
31.
The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.  相似文献   
32.
Heparan sulfate (HS) interacts with diverse heparin-binding growth factors and thereby regulates their bioactivities. These interactions depend on the structures characterized by the sulfation pattern and isomer of uronic acid residues. One of the biosynthetic modifications of HS, namely 6-O-sulfation, is catalyzed by three isoforms of HS6-O-sulfotransferase. We generated HS6ST-1- and/or HS6ST-2-deficient mice (6ST1-KO, 6ST2-KO, and double knock-out (dKO)) that exhibited different phenotypes. We examined the effects of HS 6-O-sulfation in heparin-binding growth factor signaling using fibroblasts derived from these mutant mice. Mouse embryonic fibroblasts (MEF) prepared from E14.5 dKO mice produced HS with little 6-O-sulfate, whereas 2-O-sulfation in HS from dKO-MEF (dKO-HS) was increased by 1.9-fold. HS6-O-sulfotransferase activity in the dKO-MEF was hardly detected, and HS2-O-sulfotransferase activity was 1.5-fold higher than that in wild type (WT)-MEFs. The response of dKO-MEFs to fibroblast growth factors (FGFs) was distinct from that of WT-MEFs; in dKO-MEFs, FGF-4- and FGF-2-dependent signalings were reduced to approximately 30 and 60% of WT-MEFs, respectively, and FGF-1-dependent signaling was moderately reduced compared with that of WT-MEFs but only at the lower FGF-1 concentrations. Analysis with a surface plasmon resonance biosensor demonstrated that the apparent affinity of dKO-HS for FGF-4 was markedly reduced and was also reduced for FGF-1. In contrast, the affinity of dKO-HS for FGF-2 was 2.5-fold higher than that of HS from WT-MEFs. Thus, 6-O-sulfate in HS may regulate the signalings of some of HB-GFs, including FGFs, by inducing different interactions between ligands and their receptors.  相似文献   
33.
In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The SALMFamide family is also known to an echinoderm neuropeptide. The present study examined effect of SALMFamide 1 (S1) on oocyte maturation of starfish Asterina pectinifera. Unlike GSS, S1 did not induce spawning in starfish ovary. In contrast, S1 was found to inhibit GSS secretion from radial nerves by treatment with high K+ concentration. Fifty percent inhibition was obtained by 0.1 mM S1. S1 did not have any effect on GSS- and 1-MeAde-induced oocyte maturation. Following incubation with a S1 antibody and subsequently with rhodamine-conjugated second antibody, neural networks were observed in ovaries. The networks were restricted mainly to their surface with little evidence of immunoreactivity inside the basement membranes. This indicates that neural networks are distributed in the ovarian wall. The result further suggests that S1 plays a role in oocyte maturation to regulate GSS secretion from the nervous system.  相似文献   
34.
Recurrent seizures may cause neuronal damage in the hippocampus. As neurons form intimate interactions with astrocytes via glutamate, this neuron-glia circuit may play a pivotal role in neuronal excitotoxicity following such seizures. On the other hand, astrocytes contact vascular endothelia with their endfeet. Recently, we found kainic acid (KA) administration induced microsomal prostaglandin E synthase-1 (mPGES-1) and prostaglandin E(2) (PGE(2)) receptor EP3 in venous endothelia and on astrocytes, respectively. In addition, mice deficient in mPGES-1 exhibited an improvement in KA-induced neuronal loss, suggesting that endothelial PGE(2) might modulate neuronal damage via astrocytes. In this study, we therefore investigated whether the functional associations between endothelia and astrocytes via endothelial mPGES-1 lead to neuronal injury using primary cultures of hippocampal slices. We first confirmed the delayed induction of endothelial mPGES-1 in the wild-type (WT) slices after KA-treatment. Next, we examined the effects of endothelial mPGES-1 on Ca(2+) levels in astrocytes, subsequent glutamate release and neuronal injury using cultured slices prepared from WT and mPGES-1 knockout mice. Moreover, we investigated which EP receptor on astrocytes was activated by PGE(2). We found that endothelial mPGES-1 produced PGE(2) that enhanced astrocytic Ca(2+) levels via EP3 receptors and increased Ca(2+)-dependent glutamate release, aggravating neuronal injury. This novel endothelium-astrocyte-neuron signaling pathway may be crucial for neuronal damage after repetitive seizures, and hence could be a new target for drug development.  相似文献   
35.
36.
37.
The relationship between alkaline adaptation and the resistance against environmental stresses was examined in Vibrio parahaemolyticus. Alkali-adapted cells were found to have increased resistance against various stresses, including heat, crystal violet, deoxycholic acid, and hydrogen peroxide. However, alkali-adapted cells showed no increased resistance against acid stress and heat-adapted cells did not show increased resistance against alkaline stress. Furthermore, alkaline treatment induced cell elongation with heterogenous size of the bacterium.  相似文献   
38.
39.
The extracellular carboxymethyl cellulase (CSCMCase) from the yeast, Cryptococcus sp. S-2, was produced when grown on cellobiose. It was purified to homogeneity from the supernatant by ultrafiltration, DEAE-5PW anion exchange column and TSK-Gel G3000SW gel filtration. The purified enzyme was monomeric protein with molecular mass of approximately 34 kDa. The optimum temperature and pH for the action of the enzyme were at 40–50 °C and 3.5, respectively. It was stable at pH range of 5.5–7.5 and retained approximately 50% of its maximum activity after incubating at 90 °C for 1 h. Moreover, it could able to hydrolyze carboxymethyl cellulose sodium salt higher than insoluble cellulose substrate such as Avicel, SIGMACELL® and CM cellulose. Due to its action at acidic pH and moderately stable at high temperature, the gene encoding carboxymethyl cellulase (CSCMCase) was isolated and improved the enzyme yield by high cell-density fermentation of Pichia pastoris. The CSCMCase cDNA contains 1023 nucleotides and encodes a 341-amino acid. It was successfully expressed under the control of alcohol oxidase I promoter using methanol induction of P. pastoris fermentation in a 2L ABLE bioreactor. The production of the recombinant carboxymethyl cellulases was higher than that from Cryptococcus sp. S-2 of 657-fold (2.75 and 4.2 × 10−3 mg protein L−1, respectively) indicating that the leader sequence of CSCMCase has been recognized and processed as efficiently by P. pastoris. Furthermore, the recombinant enzyme was purified in two-step of ultrafiltration and hydrophobic interaction chromatography which would be much more convenient for large-scale purification for successful industrial application.  相似文献   
40.
Galectin-9 (Gal-9) is a tandem-repeat-type member of the galectin family associated with diverse biological processes, such as apoptosis, cell aggregation, and eosinophil chemoattraction. Although the detailed sugar-binding specificity of Gal-9 has been elucidated, molecular mechanisms that underlie these functions remain to be investigated. During the course of our binding study by affinity chromatography and surface plasmon resonance (SPR) analysis, we found that human Gal-9 interacts with immobilized Gal-9 in the protein-protein interaction mode. Interestingly, this intermolecular interaction strongly depended on the activity of the carbohydrate recognition domain (CRD), because the addition of potent saccharide inhibitors abolished the binding. The presence of multimers was also confirmed by Ferguson plot analysis of result of polyacrylamide gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Moreover, this intermolecular interaction was observed between Gal-9 and other galectin members, such as Gal-3 and Gal-8, but not Gal-1. Because such properties have not been reported yet, they may explain an unidentified mechanism underlying the diverse functions of Gal-9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号