首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2224篇
  免费   128篇
  国内免费   2篇
  2022年   6篇
  2021年   17篇
  2020年   15篇
  2019年   21篇
  2018年   31篇
  2017年   16篇
  2016年   41篇
  2015年   76篇
  2014年   77篇
  2013年   149篇
  2012年   148篇
  2011年   127篇
  2010年   79篇
  2009年   103篇
  2008年   135篇
  2007年   153篇
  2006年   138篇
  2005年   146篇
  2004年   133篇
  2003年   134篇
  2002年   131篇
  2001年   20篇
  2000年   17篇
  1999年   25篇
  1998年   28篇
  1997年   29篇
  1996年   29篇
  1995年   27篇
  1994年   15篇
  1993年   25篇
  1992年   17篇
  1991年   17篇
  1990年   16篇
  1989年   17篇
  1988年   16篇
  1987年   23篇
  1986年   13篇
  1985年   15篇
  1984年   9篇
  1983年   11篇
  1982年   7篇
  1981年   15篇
  1980年   15篇
  1979年   10篇
  1978年   7篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1971年   8篇
  1965年   5篇
排序方式: 共有2354条查询结果,搜索用时 15 毫秒
71.
To clear whether podoplanin-positive cancer stem cells in squamous cell carcinoma have higher invasion activity during a fibroblasts-dependent invasion. A collagen gel invasion assay was performed using fluorescent ubiquitination-based cell cycle indicator-labeled A431 cells. The total number and number of invading cells in S/G2/M phase were counted using time-lapse imaging cocultured with fibroblasts. There was no significant difference between the number of invading podoplanin-positive and negative A431 cells when fibroblasts did not exist. On the contrary, the number of invading podoplanin-positive cells was significantly higher when fibroblasts existed. The frequency of cells in S/G2/M phase among invasion was no difference. Knockdown of podoplanin decreased the number of invaded A431 cells significantly when fibroblasts existed. Podoplanin-positive A431 cells display higher invasion activity when fibroblasts exist, suggesting that some biological functions of cancer stem cells might become evident only within the fibrous tumor microenvironment.  相似文献   
72.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   
73.
74.
75.
We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics.  相似文献   
76.
To improve the efficacy of the conformationally restricted BACE1 inhibitors, structural modifications were investigated using two strategies: (a) modification of the terminal aromatic ring and (b) insertion of a spacer between the aromatic rings. In the latter approach, another type of inhibitor 17 bearing an ethylene spacer between two aromatic rings was found to exhibit good BACE1 inhibitory activity, while the corresponding conformationally unrestricted compound 25 showed no activity. This result revealed an interesting effect of a conformational restriction with a cyclopropane ring.  相似文献   
77.
Aldehyde dehydrogenases (ALDHs), enzymes responsible for detoxification and retinoic acid biosynthesis, are considered a potent functional stem cell marker of normal and malignant cells in many tissues. To date, however, there are no available data on ALDH distributions and functions in oral mucosa. This study aims to clarify the levels and types of ALDH expression using immunohistochemistry with accompanying mRNA expression as well as an ALDEFLUOR assay, and to assess phenotypic and histological changes after manipulation of the ALDH activity of oral keratinocytes to increase the potency of a tissue-engineered oral mucosa by a specific ALDH inhibitor, diethylaminobenzaldehyde (DEAB), together with small interfering RNA of ALDH1A3 and ALDH3A1. Results showed the mRNA and cytoplasmic protein expression of ALDH1A3 and ALDH3A1 to be mostly localized in the upper suprabasal layer although no ALDH1A1 immunoreaction was detected throughout the epithelium. Oral keratinocytes with high ALDH activity exhibited a profile of differentiating cells. By pharmacological inhibition, the phenotypic analysis revealed the proliferating cell-population shifting to a more quiescent state compared with untreated cells. Furthermore, a well-structured epithelial layer showing a normal differentiation pattern and a decrease in Ki-67 immunopositive basal cells was developed by DEAB incubation, suggesting a slower turnover rate efficient to maintain undifferentiated cells. Histological findings of a regenerated oral epithelium by ALDH1A3 siRNA were similar to those when treated with DEAB while ALDH3A1 siRNA eradicated the epithelial regenerative capacity. These observations suggest the effects of phenotypic and morphological alterations by DEAB on oral keratinocytes are mainly consequent to the inhibition of ALDH1A3 activity.  相似文献   
78.
79.
A mutant of Streptomyces fradiae which requires oleic acid for neomycin formation was isolated and the effects of exogenous fatty acids and other additives on the formation of neomycin were studied. Palmitic acid and high concentration of sodium ions could replace oleic acid in neomycin formation. The fatty acid spectrum of the mutant strain ST–5B was quite different from that of the parent strain 3123. The major fatty acid components of the mutant and the parent were anteiso 15:0 and iso 16: 0, respectively. However the fatty acid composition of the mutant was changed from the anteiso 15: 0-type to the parental iso 16: 0-type by the supplement of oleic acid or high concentration of sodium ions in the medium. In the case of palmitic acid, the major fatty acid component of the mutant cells was changed from anteriso 15: 0 to normal 16:0. The role of these additives in neomycin formation by the mutant is discussed.  相似文献   
80.
A multi-channel continuous-flow analyzer equipped with biosensing devices was developed for multi-component measurement and its use in automating routine analysis was evaluated.

Biosensing was achieved by the aid of an immobilized enzyme reactor installed in the channel, and the channel switching process for the sensing of a different compound was made by using a column-switching rotary valve. Another rotary valve was used for auto-sampling. Both of the two rotary valves were interfaced to a system controller and work conjugatively in a programmed manner. Signal subtraction between different channels was found to be more precise compared with the multi-channel flow-injection analysis method, which is of merit for an analysis utilizing enzyme relay reaction (as for sucrose analysis) or for background signal subtraction. Glucose, lactate, and sucrose content in real samples were measured automatically with high reproducibility, and the results agree well with the kit method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号