首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5135篇
  免费   299篇
  国内免费   4篇
  5438篇
  2022年   23篇
  2021年   54篇
  2020年   27篇
  2019年   40篇
  2018年   62篇
  2017年   27篇
  2016年   83篇
  2015年   146篇
  2014年   149篇
  2013年   315篇
  2012年   255篇
  2011年   267篇
  2010年   163篇
  2009年   178篇
  2008年   269篇
  2007年   276篇
  2006年   247篇
  2005年   265篇
  2004年   287篇
  2003年   260篇
  2002年   259篇
  2001年   158篇
  2000年   159篇
  1999年   141篇
  1998年   68篇
  1997年   68篇
  1996年   59篇
  1995年   48篇
  1994年   41篇
  1993年   59篇
  1992年   86篇
  1991年   81篇
  1990年   75篇
  1989年   76篇
  1988年   78篇
  1987年   64篇
  1986年   54篇
  1985年   59篇
  1984年   45篇
  1983年   43篇
  1982年   25篇
  1981年   36篇
  1980年   27篇
  1979年   33篇
  1978年   29篇
  1977年   19篇
  1976年   35篇
  1975年   19篇
  1973年   16篇
  1971年   14篇
排序方式: 共有5438条查询结果,搜索用时 0 毫秒
231.
Acetyl CoA: deacetylcephalosporin C o-acetyltransferase(DCPC-ATF) catalyses the final step in the biosynthesis of cephalosporin C, the conversion of deacetylcephalosporin C to cephalosporin C. A cDNA encoding DCPC-ATF has been isolated from a cDNA library of a cephalosporin C producing fungus Acremonium chrysogenum using oligonucleotide probes based on N-terminal amino acid sequences of the enzyme. The cDNA contains a single large open reading frame for a putative precursor consisting of 12 amino acid(AA) leader peptide of unknown function, 274 AA large subunit and 126 AA small subunit at the carboxyl end. The cDNA was expressed in yeast exhibiting a functional DCPC-ATF activity. It was also indicated that the leader peptide was not essential for expression of the enzyme activity. The primary structure of DCPC-ATF shows significant homology with those of acetyl CoA: homoserine o-acetyltransferase in Saccharomyces cerevisiae and Ascobolas immersus.  相似文献   
232.
Annual net production was estimated in the secondary coppice forest near Tokyo, which was dominated by a deciduous oak,Quercus serrata Thunb. Lateral growth of stems and old branches was directly estimated by examining the annual rings for 35 shoots in a clear-cut quadrat of 10m×10m. Phytomasses of current organs were also weighed in the quadrat. Preharvest losses of current organs were determined by twelve 0.5 m2 litter traps for fine litter and twelve 6 m2 quadrats for woody litter. Branch production was also assessed indirectly by use of the stem-branch allometry and death of branches. The results of the indirect method were in sufficient agreement with the result of the direct one. Grazing loss of leaves from the canopy was estimated directly from the loss in leaf area and indirectly from the animal faeces caught by the litter traps. Net production of the canopy trees was 149 kg a−1 year−1, in which leaf production was 36.9 kg. Animals grazed about 14% of the leaf area by the end of the growing season. True consumption of leaves by animals was 7.6% of leaf production or 10% of leaf mass. Production of undergrowth, mainly a dwarf bamboo,Pleioblastus chino Makino, was 28 kg a−1 year−1, being 15% of the total stand production. Productivity of this forest was significantly higher than that of cool-temperate deciduous broadleaf forests.  相似文献   
233.
4-Aminobutyraldehyde (ABAL) has been shown to cross the blood-brain barrier and to be converted rapidly to -aminobutyric acid (GABA) in various regions of the brain. In this paper, the formation of GABA from ABAL was studied with striatum that had suffered a lesion to GABA synthesis via glutamic acid decarboxylase (GAD). The GABA formation from ABAL was invariably observed in striatum in which GAD was severely inhibited by semicarbazide or kainic acid. Thus, this is another pathway for GABA formation.  相似文献   
234.
235.
A -glucuronidase gene was introduced directly into barley (Hordeum vulgare L. cv. Kobinkatagi) coleoptile cells by microinjection and transient expression of the gene was examined. Inner epidermis tissue of coleoptiles was excised and injected with plasmid DNA, pBI221, carrying cauliflower mosaic virus 35S promoter, -glucuronidase gene, and a nopaline synthase polyadenylation region. Histochemical assay for -glucuronidase production showed positive enzyme activity only in coleoptile cells injected with plasmid DNA. Expression of the -glucuronidase gene was examined chronologically using honogenates of injected coleoptile tissues. Glucuronidase activity first appeared after 6 hr, reached the maximum level 24 hr after injection, and decreased afterwards. These results suggest that microinjection of coleoptile tissues may be a useful approach for the genetic engineering of Gramineae plants in which protoplast regeneration is difficult.  相似文献   
236.
Eggs of the hermaphrodite, self-sterile ascidian, Ciona intestinalis , were washed with acid seawater (pH 3.2), and the washing solution was then adjusted to pH 8.2. This solution was found to inhibit only the binding of non-autologous sperm to the vitelline coat (VC) of eggs, indicating that it contained self-nonself recognition activity. This activity was heat-stable and insensitive to trypsin, but was destroyed by V-8 protease and α-glucosidase. Both the hydrophobic and hydrophilic components of a lyophilized powder of the extract showed allo-recognizing activity. On TLC, the hydrophobic components gave a major spot of glucose (Glc) and a peptide spot(s) containing mainly glutamic acid and/or glutamine (Glx). The glucosyl conjugate was purified by HPLC and shown to block sperm-egg binding to various extents. Individual peptide subfractions had no inhibitory activity, but in combination they showed inhibitory activity. These findings suggest that the acid extract of Ciona eggs contains a Glc-enriched nonspecific inhibitor of sperm-egg binding, which could be the primary effector of self-incompatibility, and Glx-enriched modulators, which serve as acceptors of allo-sperm. The cooperative interactions of these components may be responsible for the diversity of allo-recognition in Ciona gametes.  相似文献   
237.
Outer and inner follicle cell-enclosed oocytes (oocyte complexes) of Halocynthia roretzi underwent germinal vesicle breakdown (GVBD) within 2 hr when transferred from ovaries to normal seawater of pH 8 (NSW). Extrusion of test cells (TC) into the perivitelline space and elevation of the chorion also occurred. This phenomenon was designated as spontaneous oocyte maturation.
Seawater of low pH, protease inhibitors such as leupeptin or soybean trypsin inhibitor (SBTI), and calcium deficiency inhibited the spontaneous maturation only when introduced to the NSW during the first 10 minutes of incubation. GVBD-blocked complexes underwent GVBD after addition of trypsin regardless of pH or the absence of calcium ions. The oocytes from which follicle cells were removed with glycosidase did not undergo GVBD in NSW, but addition of trypsin triggered GVBD in these defolliculated oocytes (TC oocytes). Furthermore, incubation media in which spontaneous maturation had occurred, induced GVBD in the TC oocytes. This GVBD-inducing activity was heat-labile and was inhibited by leupeptin.
These results indicate that in the first step of the spontaneous oocyte maturation, outer and/or inner follicle cells give a signal to the oocyte itself or TC oocyte. This signal is likely to be trypsin-like.  相似文献   
238.
Retrograde transport of lysosomes is recognised as a critical autophagy regulator. Here, we found that acrolein, an aldehyde that is significantly elevated in Parkinson''s disease patient serum, enhances autophagy by promoting lysosomal clustering around the microtubule organising centre via a newly identified JIP4‐TRPML1‐ALG2 pathway. Phosphorylation of JIP4 at T217 by CaMK2G in response to Ca2+ fluxes tightly regulated this system. Increased vulnerability of JIP4 KO cells to acrolein indicated that lysosomal clustering and subsequent autophagy activation served as defence mechanisms against cytotoxicity of acrolein itself. Furthermore, the JIP4‐TRPML1‐ALG2 pathway was also activated by H2O2, indicating that this system acts as a broad mechanism of the oxidative stress response. Conversely, starvation‐induced lysosomal retrograde transport involved both the TMEM55B‐JIP4 and TRPML1‐ALG2 pathways in the absence of the JIP4 phosphorylation. Therefore, the phosphorylation status of JIP4 acts as a switch that controls the signalling pathways of lysosoma l distribution depending on the type of autophagy‐inducing signal.  相似文献   
239.
Flies without Trehalose   总被引:2,自引:0,他引:2  
Living organisms adapt to environmental changes through metabolic homeostasis. Sugars are used primarily for the metabolic production of ATP energy and carbon sources. Trehalose is a nonreducing disaccharide that is present in many organisms. In insects, the principal hemolymph sugar is trehalose instead of glucose. As in mammals, hemolymph sugar levels in Drosophila are regulated by the action of endocrine hormones. Therefore, the mobilization of trehalose to glucose is thought to be critical for metabolic homeostasis. However, the physiological role of trehalose as a hemolymph sugar during insect development remains largely unclear. Here, we demonstrate that mutants of the trehalose-synthesizing enzyme Tps1 failed to produce trehalose as expected but survived into the late pupal period and died before eclosion. Larvae without trehalose grew normally, with a slight reduction in body size, under normal food conditions. However, these larvae were extremely sensitive to starvation, possibly due to a local defect in the central nervous system. Furthermore, Tps1 mutant larvae failed to grow on a low-sugar diet and exhibited severe growth defects on a low-protein diet. These diet-dependent phenotypes of Tps1 mutants demonstrate the critical role of trehalose during development in Drosophila and reveal how animals adapt to changes in nutrient availability.  相似文献   
240.
Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing α,β-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号