首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2063篇
  免费   94篇
  国内免费   2篇
  2159篇
  2022年   8篇
  2021年   17篇
  2020年   14篇
  2019年   18篇
  2018年   31篇
  2017年   16篇
  2016年   39篇
  2015年   76篇
  2014年   71篇
  2013年   145篇
  2012年   144篇
  2011年   118篇
  2010年   74篇
  2009年   101篇
  2008年   131篇
  2007年   145篇
  2006年   131篇
  2005年   138篇
  2004年   132篇
  2003年   128篇
  2002年   126篇
  2001年   14篇
  2000年   12篇
  1999年   19篇
  1998年   27篇
  1997年   26篇
  1996年   26篇
  1995年   23篇
  1994年   11篇
  1993年   22篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1988年   10篇
  1987年   17篇
  1986年   6篇
  1985年   12篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   5篇
  1976年   7篇
  1975年   5篇
  1974年   3篇
  1965年   3篇
  1963年   2篇
排序方式: 共有2159条查询结果,搜索用时 0 毫秒
51.
Biological Trace Element Research - The essential trace element zinc maintains liver functions. Liver diseases can alter overall zinc concentrations, and hypozincemia is associated with various...  相似文献   
52.
Inflammasomes are innate immune mechanisms that activate caspase-1 in response to a variety of stimuli, including Salmonella infection. Active caspase-1 has a potential to induce two different types of cell death, depending on the expression of the pyroptosis mediator gasdermin D (GSDMD); following caspase-1 activation, GSDMD-sufficient and GSDMD-null/low cells undergo pyroptosis and apoptosis, respectively. Although Bid, a caspase-1 substrate, plays a critical role in caspase-1 induction of apoptosis in GSDMD-null/low cells, an additional mechanism that mediates this cell death independently of Bid has also been suggested. This study investigated the Bid-independent pathway of caspase-1-induced apoptosis. Caspase-1 has been reported to process caspase-6 and caspase-7. Silencing of caspase-7, but not caspase-6, significantly reduced the activation of caspase-3 induced by caspase-1, which was activated by chemical dimerization, in GSDMD/Bid-deficient cells. CRISPR/Cas9-mediated depletion of caspase-7 had the same effect on the caspase-3 activation. Moreover, in the absence of GSDMD and Bid, caspase-7 depletion reduced apoptosis induced by caspase-1 activation. Caspase-7 was activated following caspase-1 activation independently of caspase-3, suggesting that caspase-7 acts downstream of caspase-1 and upstream of caspase-3. Salmonella induced the activation of caspase-3 in GSDMD-deficient macrophages, which relied partly on Bid and largely on caspase-1. The caspase-3 activation and apoptotic morphological changes seen in Salmonella-infected GSDMD/Bid-deficient macrophages were attenuated by caspase-7 knockdown. These results suggest that in addition to Bid, caspase-7 can also mediate caspase-1-induced apoptosis and provide mechanistic insights into inflammasome-associated cell death that is one major effector mechanism of inflammasomes.  相似文献   
53.
The GABAergic synapses, a primary inhibitory synapse in the mammalian brain, is important for the normal development of brain circuits, and for the regulation of the excitation-inhibition balance critical for brain function from the developmental stage throughout life. However, the molecular mechanism underlying the formation, maintenance, and modulation of GABAergic synapses is less understood compared to that of excitatory synapses. Quantum dot-single particle tracking (QD-SPT), a super-resolution imaging technique that enables the analysis of membrane molecule dynamics at single-molecule resolution, is a powerful tool to analyze the behavior of proteins and lipids on the plasma membrane. In this review, we summarize the recent application of QD-SPT in understanding of GABAergic synaptic transmission. Here we introduce QD-SPT experiments that provide further insights into the molecular mechanism supporting GABAergic synapses. QD-SPT studies revealed that glutamate and Ca2+ signaling is involved in (a) the maintenance of GABAergic synapses, (b) GABAergic long-term depression, and GABAergic long-term potentiation, by specifically activating signaling pathways unique to each phenomenon. We also introduce a novel Ca2+ imaging technique to describe the diversity of Ca2+ signals that may activate the downstream signaling pathways that induce specific biological output.  相似文献   
54.
To clear whether podoplanin-positive cancer stem cells in squamous cell carcinoma have higher invasion activity during a fibroblasts-dependent invasion. A collagen gel invasion assay was performed using fluorescent ubiquitination-based cell cycle indicator-labeled A431 cells. The total number and number of invading cells in S/G2/M phase were counted using time-lapse imaging cocultured with fibroblasts. There was no significant difference between the number of invading podoplanin-positive and negative A431 cells when fibroblasts did not exist. On the contrary, the number of invading podoplanin-positive cells was significantly higher when fibroblasts existed. The frequency of cells in S/G2/M phase among invasion was no difference. Knockdown of podoplanin decreased the number of invaded A431 cells significantly when fibroblasts existed. Podoplanin-positive A431 cells display higher invasion activity when fibroblasts exist, suggesting that some biological functions of cancer stem cells might become evident only within the fibrous tumor microenvironment.  相似文献   
55.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   
56.
57.
We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics.  相似文献   
58.
59.
A multi-channel continuous-flow analyzer equipped with biosensing devices was developed for multi-component measurement and its use in automating routine analysis was evaluated.

Biosensing was achieved by the aid of an immobilized enzyme reactor installed in the channel, and the channel switching process for the sensing of a different compound was made by using a column-switching rotary valve. Another rotary valve was used for auto-sampling. Both of the two rotary valves were interfaced to a system controller and work conjugatively in a programmed manner. Signal subtraction between different channels was found to be more precise compared with the multi-channel flow-injection analysis method, which is of merit for an analysis utilizing enzyme relay reaction (as for sucrose analysis) or for background signal subtraction. Glucose, lactate, and sucrose content in real samples were measured automatically with high reproducibility, and the results agree well with the kit method.  相似文献   
60.
The leucine dehydrogenase (l-leucine: NAD+ oxidoreductase, deaminating, EC 1.4.1.9) gene of Clostridium thermoaceticum was cloned and expressed in Escherichia coli C600 with a vector plasmid, pICD242, which was constructed from pBR322 and the leucine dehydrogenase gene derived from C. thermoaceticum. The enzyme overproduced in the clone was purified about 12 fold to homogeneity by heat treatment and another two steps with a yield of 46%. The enzyme of E. coli- pICD242 was immunochemically identical with that of C. thermoaceticum. The enzyme has a molecular weight of about 350,000 and consists of six subunits identical in molecular weight (56,000). The enzyme is not inactivated by heat treatment: at pH 7.2 and 75°C for 15 min; at 55°C and various pH’s between 6.0 and 10.0 for 10 min. The enzyme catalyzes the oxidative deamination of branched-chain l-amino acids and the reductive amination of their 2-oxo analogues in the presence of NAD+ and NADH, respectively. The pro-S hydrogen at C-4 of the dihydronicotin- amide ring of NADH is exclusively transferred to the substrate; the enzyme is B stereospecific. The enzymological properties are very similar to those of the Bacillus stearothermophilus enzyme [T. Ohshima, S. Nagata and K. Soda, Arch. Microbiol., 141, 407 (1985)].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号