首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   98篇
  国内免费   2篇
  2022年   7篇
  2021年   17篇
  2020年   14篇
  2019年   18篇
  2018年   30篇
  2017年   16篇
  2016年   38篇
  2015年   76篇
  2014年   71篇
  2013年   144篇
  2012年   143篇
  2011年   118篇
  2010年   73篇
  2009年   100篇
  2008年   128篇
  2007年   144篇
  2006年   128篇
  2005年   136篇
  2004年   132篇
  2003年   130篇
  2002年   124篇
  2001年   13篇
  2000年   11篇
  1999年   19篇
  1998年   27篇
  1997年   27篇
  1996年   26篇
  1995年   24篇
  1994年   13篇
  1993年   22篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   16篇
  1986年   6篇
  1985年   12篇
  1984年   6篇
  1983年   12篇
  1982年   5篇
  1981年   10篇
  1980年   11篇
  1979年   8篇
  1978年   6篇
  1976年   7篇
  1975年   5篇
  1974年   3篇
  1965年   3篇
  1963年   2篇
排序方式: 共有2149条查询结果,搜索用时 15 毫秒
91.
In starfish, the peptide hormone gonad-stimulating substance (GSS) secreted from nervous tissue stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) production by ovarian follicle cells. The SALMFamide family is also known to an echinoderm neuropeptide. The present study examined effect of SALMFamide 1 (S1) on oocyte maturation of starfish Asterina pectinifera. Unlike GSS, S1 did not induce spawning in starfish ovary. In contrast, S1 was found to inhibit GSS secretion from radial nerves by treatment with high K+ concentration. Fifty percent inhibition was obtained by 0.1 mM S1. S1 did not have any effect on GSS- and 1-MeAde-induced oocyte maturation. Following incubation with a S1 antibody and subsequently with rhodamine-conjugated second antibody, neural networks were observed in ovaries. The networks were restricted mainly to their surface with little evidence of immunoreactivity inside the basement membranes. This indicates that neural networks are distributed in the ovarian wall. The result further suggests that S1 plays a role in oocyte maturation to regulate GSS secretion from the nervous system.  相似文献   
92.
A mixture of steamed soybean and boiled rice with seeded Aspergillus oryzae was naturally fermented without addition of yeasts or Lactobacilli, and kept matured for 12 months at room temperature. Chemical analysis of this rice-koji miso sample for lipid changes during maturation showed that triacylglycerol was gradually decomposed into free fatty acid, with distinct formation of fatty acid ethyl ester which, six months after the start of fermentation, came to account for 35.0% of total lipid. The ester was constituted primarily with linoleic acid (ca. 50%) and oleic acid (ca. 20%), no appreciable change in this proportion being observed during maturation. Also, the proportion was unique in that this did not reflect the fatty acid composition in a mixture of the two materials. It is possible to monitor the maturation of the rice-koji miso by following up the increase with time in fatty acid ethyl ester.  相似文献   
93.
The development of engineered constructs to bridge nerve gaps may hold the key to improved functional outcomes in the repair of injured peripheral nerves. These constructs must be rendered bioactive by providing the growth factors required for successful peripheral nerve regeneration. Previous studies demonstrated that harvested human and rat dermal fibroblasts could be genetically engineered to release nerve growth factor (NGF) both in vitro and in vivo. The use of fibroblasts, however, has the potential to cause scarring, and the expression of NGF from those cells was transient. To overcome these potential difficulties, human embryonic kidney cells were modified for use with the ecdysone-inducible mammalian expression system. These cells (hNGF-EcR-293) have been engineered and regulated to secrete human NGF in response to the ecdysone analogue ponasterone A. HEK-293 cells were transfected with human NGF cDNA with the ecdysone-inducible mammalian expression system (Invitrogen, Carlsbad, Calif.). Stable clones were then selected. Ponasterone A, an analogue of ecdysone, was used as the inducing agent. The secretion of NGF into the medium was analyzed with two different methods. After 24 hours of exposure to the inducing agent, cell medium was transferred to PC-12 cells seeded in 12-well plates, for determination of whether the secreted NGF was bioactive. Medium from untreated or ponasterone A-treated hNGF-EcR-293 cells was deemed bioactive on the basis of its ability to induce PC-12 cell differentiation. The concentrations of secreted NGF were also quantified with an enzyme-linked immunosorbent assay, in triplicate. NGF production was measured in successive samples of the same medium during a 9-day period, with maximal release of 9.05 +/- 2.6 ng/ml at day 9. Maximal NGF production was 8.46 +/- 2.1 pg/10(3) cells at day 9. These levels were statistically significantly different from levels in noninduced samples (p 相似文献   
94.
It has been known that halophilic bacteria often show natural resistance to antibiotics, dyes, and toxic metal ions, but the mechanism and regulation of this resistance have remained unexplained. We have addressed this question by identifying the gene responsible for multidrug resistance. A spontaneous ofloxacin-resistant mutant derived from the moderately halophilic bacterium Chromohalobacter sp. strain 160 showed a two- to fourfold increased resistance to structurally diverse compounds, such as tetracycline, cefsulodin, chloramphenicol, and ethidium bromide (EtBr), and tolerance to organic solvents, e.g., hexane and heptane. The mutant produced an elevated level of the 58-kDa outer membrane protein. This mutant (160R) accumulated about one-third the level of EtBr that the parent cells did. An uncoupler, carbonyl cyanide m-chlorophenylhydrazone, caused a severalfold increase in the intracellular accumulation of EtBr, with the wild-type and mutant cells accumulating nearly equal amounts. The hrdC gene encoding the 58-kDa outer membrane protein has been cloned. Disruption of this gene rendered the cells hypersusceptible to antibiotics and EtBr and led to a high level of accumulation of intracellular EtBr. The primary structure of HrdC has a weak similarity to that of Escherichia coli TolC. Interestingly, both drug resistance and the expression of HrdC were markedly increased in the presence of a high salt concentration in the growth medium, but this was not observed in hrdC-disrupted cells. These results indicate that HrdC is the outer membrane component of the putative efflux pump assembly and that it plays a major role in the observed induction of drug resistance by salt in this bacterium.  相似文献   
95.
Cyclooxygenase-2 (COX-2), the rate-limiting enzyme for prostanoid biosynthesis, plays a key role in gastrointestinal carcinogenesis. Among various prostanoids, prostaglandin E2 (PGE2) appears to be most responsible for cancer development. To investigate the role of PGE2 in gastric tumorigenesis, we constructed transgenic mice simultaneously expressing COX-2 and microsomal prostaglandin E synthase (mPGES)-1 in the gastric epithelial cells. The transgenic mice developed metaplasia, hyperplasia and tumorous growths in the glandular stomach with heavy macrophage infiltrations. Although gastric bacterial counts in the transgenic mice were within the normal range, treatment with antibiotics significantly suppressed activation of the macrophages and tumorous hyperplasia. Importantly, the antibiotics treatment did not affect the macrophage accumulation. Notably, treatment of the transgenic mice with lipopolysaccharides induced proinflammatory cytokines through Toll-like receptor 4 in the gastric epithelial cells. These results indicate that an increased level of PGE2 enhances macrophage infiltration, and that they are activated through epithelial cells by the gastric flora, resulting in gastric metaplasia and tumorous growth. Furthermore, Helicobacter infection upregulated epithelial PGE2 production, suggesting that the COX-2/mPGES-1 pathway contributes to the Helicobacter-associated gastric tumorigenesis.  相似文献   
96.
The addition of substituents to the pyridopyrimidine scaffold of MexAB-OprM specific efflux pump inhibitors was explored. As predicted by a pharmacophore model, the incorporation substituents at the 2-position improved potency. Piperidines were found to be optimal, and further introduction of polar groups without compromising the activity was shown to be feasible. Careful positioning of the essential acidic moiety of the pharmacophore relative to the scaffold led to the discovery of vinyl tetrazoles with still greater potency.  相似文献   
97.
Human alpha-1,3-fucosyltansferase (FucT) encoded by the FUT6 gene was displayed at the cell surface of yeast cells engineered using the yeast cell wall protein Pir1 or Pir2, and the FucT activity was detected at the surface of cells producing the Pir1-HA-FUT6 or Pir2-FLAG-FUT6 fusion proteins. To obtain higher activity, we engineered the host yeast cells in which endogenous PIR genes of the PIR1-4 gene family were disrupted. Among the disruptants, the pir1Delta pir2Delta pir3Delta strain with the PIR1-HA-FUT6 fusion gene showed the highest FucT activity, which was about three-fold higher than that of the wild-type strain. Furthermore, the co-expression of both the Pir1-HA-FUT6 and the Pir2-FLAG-FUT6 fusions showed an approximately 1.5-fold higher activity than that in the cell wall displaying Pir1-HA-FUT6 alone. The present method was thus effective for producing yeast cells that can easily synthesize various oligosaccharides, such as Le(x) and sLe(x), using Pir-glycosyltransferase fusions in combination with the deletion of endogenous PIR genes.  相似文献   
98.
Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 µg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2s based on the amino acid sequences revealed that neurotoxic PLA2s including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2s showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2s, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2s evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation. The nucleotide sequences reported in this paper are available from the GenBank/EMBL/DDBJ databases under accession numbers AB102728 and AB102729.  相似文献   
99.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   
100.
Laminin alpha chains (alpha1-alpha5 chains) have diverse chain-specific biological functions. The LG4 modules of laminin alpha chains consist of a 14-stranded beta-sheet (A-N) sandwich structure. Several biologically active sequences have been identified in the connecting loop regions. Here, we evaluated the biological activities of the loop regions of the E and F strands in the LG4 modules using five homologous peptides from each of the mouse alpha chains (EF-1: DYATLQLQEGRLHFMFDLG, alpha1 chain 2747-2765; EF-2: DFGTVQLRNGFPFFSYDLG, alpha2 chain 2808-2826; EF-3: RDSFVALYLSEGHVIFALG, alpha3 chain 2266-2284; EF-4: DFMTLFLAHGRLVFMFNVG, alpha4 chain 1511-1529; EF-5: SPSLVLFLNHGHFVAQTEGP, alpha5 chain 3304-3323). These homologous peptides showed chain-specific cell attachment and neurite outgrowth activities. Well organized actin stress fibers and focal contacts with vinculin accumulation were observed in fibroblasts attached on EF-1, whereas fibroblasts on EF-2 and EF-4 showed filopodia with ruffling. Fibroblast attachment to EF-2 and EF-4 was mediated by syndecan-2. In contrast, EF-1 promoted alpha2beta1 integrin-mediated fibroblast attachment and inhibited fibroblast attachment to a recombinant laminin alpha1 chain LG4-5. The receptors for EF-3 and EF-5 are unknown. Further, when the active core sequence of EF-1 was cyclized, utilizing two additional cysteine residues at both the N and C termini through a disulfide bridge, the cyclic peptide significantly enhanced integrin-mediated cell attachment. These results indicate that integrin-mediated cell attachment to the EF-1 sequence is conformation-dependent and that the loop structure is important for the activity. The homologous peptides, which promote either integrin- or syndecan-mediated cell attachment, may be useful for understanding the cell type- and chain-specific biological activities of the laminins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号