首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3927篇
  免费   272篇
  4199篇
  2023年   13篇
  2022年   43篇
  2021年   72篇
  2020年   37篇
  2019年   47篇
  2018年   82篇
  2017年   61篇
  2016年   103篇
  2015年   161篇
  2014年   171篇
  2013年   241篇
  2012年   261篇
  2011年   260篇
  2010年   146篇
  2009年   152篇
  2008年   247篇
  2007年   230篇
  2006年   190篇
  2005年   184篇
  2004年   214篇
  2003年   160篇
  2002年   175篇
  2001年   66篇
  2000年   59篇
  1999年   58篇
  1998年   44篇
  1997年   34篇
  1996年   33篇
  1995年   29篇
  1994年   26篇
  1993年   31篇
  1992年   57篇
  1991年   64篇
  1990年   45篇
  1989年   42篇
  1988年   37篇
  1987年   27篇
  1986年   14篇
  1985年   30篇
  1984年   41篇
  1983年   19篇
  1982年   14篇
  1981年   16篇
  1980年   19篇
  1979年   14篇
  1978年   20篇
  1977年   10篇
  1976年   16篇
  1975年   13篇
  1970年   9篇
排序方式: 共有4199条查询结果,搜索用时 78 毫秒
141.
Yong-Biao J  Islam MN  Sueda S  Kondo H 《Biochemistry》2004,43(19):5912-5920
To clarify the mechanism of carboxyl transfer from carboxylbiotin to pyruvate, the following conserved amino acid residues present in the carboxyl transferase domain of Bacillus thermodenitrificans pyruvate carboxylase were converted to homologous amino acids: Asp543, Glu576, Glu592, Asp649, Lys712, Asp713, and Asp762. The carboxylase activity of the resulting mutants, D543E, E576D, E576Q, E592Q, D649N, K712R, K712Q, D713E, D713N, D762E, and D762N, was generally less than that of the wild type from mutation, but it decreased the most to 5% or even less than that of the wild type with D543E, D576Q, D649N, K712R, and K712Q. The decrease in activity observed for Asp543, Asp649, and Lys712 mutants was not for structural reasons because their structures seemed to remain intact as assessed by gel filtration and circular dichroism. On the basis of these data, a mechanism is proposed where Lys712 and Asp543 serve as the key acid and base catalyst, respectively.  相似文献   
142.
143.
144.
In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.  相似文献   
145.
146.
This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.  相似文献   
147.
Chemotactic chemokines can be released from lung fibroblasts in response to interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha. An imbalance between proteases and antiproteases has been observed at inflammatory sites, and, therefore, protease inhibitors might modulate fibroblast release of chemotactic cytokines. To test this hypothesis, serine protease inhibitors (FK-706, alpha(1)-antitrypsin, or N(alpha)-p-tosyl-L-lysine chloromethyl ketone) were evaluated for their capacity to attenuate the release of neutrophil chemotactic activity (NCA) or monocyte chemotactic activity (MCA) from human fetal lung fibroblasts (HFL-1). Similarly, the release of the chemoattractants IL-8, granulocyte colony-stimulating factor, monocyte chemoattractant protein-1, macrophage colony-stimulating factor, and granulocyte/macrophage colony-stimulating factor, from HFL-1, were evaluated in response to IL-1beta and TNF-alpha. NCA, MCA, and chemotactic cytokines were attenuated by FK-706. However, matrix metalloproteinase inhibitors were without effect, and cysteine protease inhibitors only slightly attenuated chemotactic or cytokine release. These data suggest that IL-1beta and TNF-alpha may stimulate lung fibroblasts to release NCA and MCA by a protease-dependent mechanism and that serine protease inhibitors may attenuate the release.  相似文献   
148.
Although L-asparaginase related hyperglycemia is well known adverse event, it is not studied whether the profile of this adverse event is affected by intensification of L-asparaginase administration. Here, we analyzed the profile of L-asparaginase related hyperglycemia in a 1,176 patients with pediatric acute lymphoblastic leukemia treated according to the Japan Association of Childhood Leukemia Study ALL-02 protocol using protracted L-asparaginase administration in maintenance phase. We determined that a total of 75 L-asparaginase related hyperglycemia events occurred in 69 patients. Although 17 events (17/1176, 1.4%) developed in induction phase, which was lower incidence than those (10–15%) in previous reports, 45 events developed during the maintenance phase with protracted L-asparaginase administration. Multivariate analysis showed that older age at onset (≥10 years) was a sole independent risk factor for L-asparaginase-related hyperglycemia (P<0.01), especially in maintenance phase. Contrary to the previous reports, obesity was not associated with L-asparaginase-related hyperglycemia. These findings suggest that protracted administration of L-asparaginase is the risk factor for hyperglycemia when treating adolescent and young adult acute lymphoblastic leukemia patients.  相似文献   
149.
150.
Chlorophyllase (CLH) is a common plant enzyme that catalyzes the hydrolysis of chlorophyll to form chlorophyllide, a more hydrophilic derivative. For more than a century, the biological role of CLH has been controversial, although this enzyme has been often considered to catalyze chlorophyll catabolism during stress-induced chlorophyll breakdown. In this study, we found that the absence of CLH does not affect chlorophyll breakdown in intact leaf tissue in the absence or the presence of methyl-jasmonate, which is known to enhance stress-induced chlorophyll breakdown. Fractionation of cellular membranes shows that Arabidopsis (Arabidopsis thaliana) CLH is located in the endoplasmic reticulum and the tonoplast of intact plant cells. These results indicate that CLH is not involved in endogenous chlorophyll catabolism. Instead, we found that CLH promotes chlorophyllide formation upon disruption of leaf cells, or when it is artificially mistargeted to the chloroplast. These results indicate that CLH is responsible for chlorophyllide formation after the collapse of cells, which led us to hypothesize that chlorophyllide formation might be a process of defense against chewing herbivores. We found that Arabidopsis leaves with genetically enhanced CLH activity exhibit toxicity when fed to Spodoptera litura larvae, an insect herbivore. In addition, purified chlorophyllide partially suppresses the growth of the larvae. Taken together, these results support the presence of a unique binary defense system against insect herbivores involving chlorophyll and CLH. Potential mechanisms of chlorophyllide action for defense are discussed.Plants have evolved both constitutive and inducible defense mechanisms against herbivores. Constitutive mechanisms include structural defenses (e.g. spines and trichomes) and specific chemical compounds. Constitutive defense mechanisms provide immediate protection against herbivore attacks, although they represent an energy investment by the plant regardless of whether herbivory occurs or not (Mauricio, 1998; Bekaert et al., 2012). By contrast, inducible defense mechanisms do not require an up-front energy cost, although such mechanisms may not be as immediate as constitutive ones when herbivore feeding occurs (Windram et al., 2012). Accordingly, plants exhibit both constitutive and inducible defense mechanisms against herbivory to balance the speed and cost of response. In this regard, it is plausible that the recruitment of abundant primary metabolites for defensive purposes might represent a substantial benefit to plants, providing both a swift and economical defense function.Toxic chemical compounds form an essential part in both constitutive and inducible defense mechanisms. However, these compounds are potentially a double-edged sword for plants, in a sense that they might pose toxic effects for both plants and herbivores. Plants have evolved an intricate binary system that prevents autointoxication by their own chemical compounds. Specifically, a toxic substance is stored in its inactive form and is spatially isolated from specific activating enzymes. These enzymes activate the substance when cells are disrupted by chewing herbivores (Saunders and Conn, 1978; Thayer and Conn, 1981; Morant et al., 2008). One of the most extensively studied binary defense systems is the glucosinolate/myrosinase system, in which the glucosinolate substrate and their hydrolyzing enzyme, a thioglucosidase myrosinase, are compartmentalized. Upon tissue damage, both the substrate and the enzyme come into contact to produce unstable aglycones, and various toxic compounds are then spontaneously produced (Bones and Rossiter, 1996). Another well-known example of the binary system is comprised of cyanogenic glucosides and β-glucosidase (Vetter, 2000; Mithöfer and Boland, 2012). In this system, nontoxic cyanogenic glycoside compounds are stored in the vacuole, whereas, the related glycosidase is localized in the cytoplasm. Upon cell destruction by chewing herbivores, the cyanogenic glycosides are hydrolyzed by glycosidase to yield unstable cyanohydrin that is either spontaneously or enzymatically converted into toxic hydrogen cyanide and a ketone or an aldehyde. Because the binary defense system is efficient and effective, a use of ubiquitous compounds for such systems would provide further benefits for plants.Tetrapyrrole compounds, in particular heme and chlorophyll, are abundant in plant cells. Despite their significant roles in various biological processes including photosynthesis and respiration, many tetrapyrroles are highly toxic to plant and animal cells, if present in excess amounts (Kruse et al., 1995; Meskauskiene et al., 2001). Their photodynamic properties can cause the generation of reactive oxygen species upon illumination, resulting in cell injury or direct cell death. For example, Tapper et al. (1975) showed that a tetrapyrrole compound (pheophorbide a), which is readily converted from dietary chlorophyll through the loss of magnesium and phytol, reduces the growth and survival rates of young albino rats through its photodynamic property. More recently, Jonker et al. (2002) demonstrated that dietary-derived pheophorbide a causes severe damages on the skin of mutant mice that lack a transporter to excrete pheophorbide a from cells. These studies indicate that incorporation of an excessive amount of tetrapyrrole compounds can induce photosensitization in animals. Previous studies also showed that tetrapyrroles have illumination-independent deleterious effects on insects. For example, pheophorbide a affected the assimilation of the plant sterols to synthesize developmental hormones of insects by inhibiting the activity of a key enzyme, cholesterol acyltransferase (Song et al., 2002). Moreover, some tetrapyrroles, including pheophorbide a, have been suggested to induce illumination-independent cell death in plants as well by an unknown mechanism (Hirashima et al., 2009). It is proposed that organisms use the toxicity of tetrapyrroles for their defense systems. The larvae of tortoise beetle (Chelymorpha alternans) even utilize pheophorbide a as a powerful deterrent in the fecal shield to protect themselves from their predators (Vencl et al., 2009). Kariola et al. (2005) suggested that a chlorophyll derivative, chlorophyllide, is involved in the defense against fungi, based on their observations that down-regulation of a chlorophyll-hydrolyzing enzyme, chlorophyllase (CLH), results in increased susceptibility of Arabidopsis (Arabidopsis thaliana) plants to the necrotrophic fungus Alternaria brassicicola.In this study, we examined the possibility that plants use tetrapyrroles for defense against herbivores by analyzing CLH, a well-known hydrolase common in plants. Chlorophyll consists of a tetrapyrrolic macrocycle and a hydrophobic phytol side chain (Fig. 1). Phytol hydrolysis results in the formation of chlorophyllide (Fig. 1), a less hydrophobic chlorophyll derivative, which has photochemical properties similar to chlorophyll. Two different plant enzymes are known to catalyze the cleavage of phytol, pheophytinase (PPH) and CLH. PPH is a chloroplast-located enzyme that specifically catalyzes the removal of phytol from Mg-free chlorophyll catabolites (Schelbert et al., 2009). This enzyme was only recently discovered and has been shown to be responsible for chlorophyll degradation during leaf senescence. By contrast, CLH has a broader substrate specificity and removes the side chain from chlorophyll or other chlorophyll derivatives (McFeeters et al., 1971). CLH activity was first reported in leaf extracts in 1913 (Willstätter and Stoll, 1913), but despite a century of research, in vivo function and intracellular localization of this enzyme remained controversial. Some reports have indicated CLH to localize to chloroplasts (Azoulay Shemer et al., 2008; Azoulay-Shemer et al., 2011), while Schenk et al. (2007), by examining the intracellular localization of transiently expressed CLH-GFP fusions, proposed Arabidopsis CLH to localize outside the chloroplast. Schenk et al. (2007) also reported that the lack of CLH does not affect chlorophyll degradation during leaf senescence. However, it remains possible that CLH is specifically involved in chlorophyll degradation in response to stresses that activate jasmonate signaling, such as wounding or pathogen attack. This hypothesis is based on the observation that the expression of a CLH gene was highest when methyl-jasmonate (MeJA; a derivative of jasmonic acid) was applied to Arabidopsis plants (Tsuchiya et al., 1999).Open in a separate windowFigure 1.Early steps of proposed chlorophyll breakdown pathways. MCS, Magnesium-dechelating substance.Here, we report that CLH is not involved in endogenous chlorophyll breakdown even when leaf senescence was promoted by jasmonate signaling. CLH is shown to localize to the chlorophyll-free endoplasmic reticulum (ER) and the tonoplast of intact plant cells. We found that CLH promotes the conversion of chlorophyll into chlorophyllide when leaf cells are disrupted or when CLH is genetically mislocalized to chloroplasts. To examine the possibility that plants use chlorophyll and CLH to form a binary defense system against herbivores, a generalist herbivore, Spodoptera litura larvae, was employed to investigate the toxicity of Arabidopsis leaves with genetically enhanced CLH activity and purified chlorophyllide. The results support our hypothesis, indicating plants to deploy an abundant photosynthetic pigment for defense against herbivores, which would be economic and provide adaptation benefits to plants. A potential mechanism of chlorophyllide action as part of the plant defense system is discussed based on the examination of chlorophyllide binding to the insect gut.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号