首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3546篇
  免费   323篇
  国内免费   1篇
  2023年   11篇
  2022年   40篇
  2021年   60篇
  2020年   32篇
  2019年   43篇
  2018年   75篇
  2017年   54篇
  2016年   85篇
  2015年   136篇
  2014年   145篇
  2013年   235篇
  2012年   224篇
  2011年   246篇
  2010年   149篇
  2009年   137篇
  2008年   207篇
  2007年   203篇
  2006年   179篇
  2005年   169篇
  2004年   184篇
  2003年   146篇
  2002年   154篇
  2001年   45篇
  2000年   50篇
  1999年   60篇
  1998年   48篇
  1997年   38篇
  1996年   41篇
  1995年   33篇
  1994年   37篇
  1993年   30篇
  1992年   45篇
  1991年   49篇
  1990年   47篇
  1989年   39篇
  1988年   38篇
  1987年   27篇
  1986年   27篇
  1985年   40篇
  1984年   34篇
  1983年   25篇
  1982年   21篇
  1981年   20篇
  1980年   19篇
  1979年   23篇
  1977年   18篇
  1976年   14篇
  1975年   14篇
  1973年   11篇
  1970年   10篇
排序方式: 共有3870条查询结果,搜索用时 15 毫秒
921.
Monoacetylphloroglucinol (MAPG) acetyltransferase, catalyzing the conversion of MAPG to 2,4-diacetylphloroglucinol (DAPG), was purified from Pseudomonas sp. YGJ3 grown without Cl(-). Cl(-) and pyoluteorin repressed expression of the enzyme. SDS-polyacrylamide gel electrophoresis showed that the purified enzyme (M(r)=330 kDa) was composed of three subunits of 17, 38, and 43 kDa, and protein sequencing identified these as PhlB, PhlA, and PhlC respectively. The enzyme catalyzed the reversible disproportionation of 2 moles of MAPG to phloroglucinol (PG) and DAPG. The equilibrium constant K (=[DAPG][PG]/[MAPG](2)) was estimated to be about 1.0 at 25 °C. A KpnI 20-kb DNA fragment was cloned from the genomic DNA of strain YGJ3, and a 12,598-bp long DNA region containing the phl gene cluster phlACBDEFGHI was sequenced. PCR cloning and expression of the phl genes in Escherichia coli confirmed that expression of phlACB genes produced MAPG ATase.  相似文献   
922.
Satooka H  Isobe T  Nitoda T  Kubo I 《Phytomedicine》2012,19(11):1016-1023
The effects of the four major ent-kaurene diterpenoids isolated from the aerial part of Rabdosia japonica (Labiatae) on murine B16-F10 melanoma cells were investigated. Among the compounds tested, oridonin and nodosin most significantly suppressed cellular melanin production when the cells were cultured with these diterpenoids. However, oridonin and nodosin exhibited cytotoxicity against the same melanoma cells with an IC(50) of 1.1μM (0.40μg/ml) and of 1.3μM (0.47μg/ml) and almost complete lethality was observed at 4.0μM and at 8.0μM, respectively, and therefore observed melanogenesis inhibition is mainly due to its melanocytotoxic effect. Morphological observation showed that oridonin or nodosin treated B16-F10 melanoma cells induced dendrite structure. Diterpenoids quickly formed adducts partly in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% of fetal bovine serum (10% FBS-DMEM) before their application to the cells. Approximately 20% of oridonin formed adducts within the first 15min. Notably, dihydronodosin exhibited inferior cytotoxicity (>85% cell viability at 100μM) but still significantly suppressed melanogenesis (>55%) when murine B16-F10 melanoma cells were cultured with this diterpenoid derivatives. Hence, dihydronodosin can be a potential melanogenesis inhibitor.  相似文献   
923.
924.
The Notch signaling pathway plays a crucial role in specifying cellular fates by interaction between cellular neighbors; however, the molecular mechanism underlying smooth muscle cell (SMC) differentiation by Notch signaling has not been well characterized. Here we demonstrate that Jagged1-Notch signaling promotes SMC differentiation from mesenchymal cells. Overexpression of the Notch intracellular domain, an activated form of Notch, up-regulates the expression of multiple SMC marker genes including SMC-myosin heavy chain (Sm-mhc) in mesenchymal 10T1/2 cells, but not in non-mesenchymal cells. Physiological Notch stimulation by its ligand Jagged1, but not Dll4, directly induces Sm-mhc expression in 10T1/2 cells without de novo protein synthesis, indicative of a ligand-selective effect. Jagged1-induced expression of SM-MHC was blocked bygamma-secretase inhibitor, N-(N-(3,5-difluorophenyl)-l-alanyl)-S-phenylglycine t-butyl ester, which impedes Notch signaling. Using Rbp-jkappa-deficient cells and site-specific mutagenesis of the SM-MHC gene, we show that such an induction is independent of the myocardin-serum response factor-CArG complex, but absolutely dependent on RBP-Jkappa, a major mediator of Notch signaling, and its cognate binding sequence. Of importance, Notch signaling and myocardin synergistically activate SM-MHC gene expression. Taken together, these data suggest that the Jagged1-Notch pathway constitutes an instructive signal for SMC differentiation through an RBP-Jkappa-dependent mechanism and augments gene expression mediated by the myocardin-SRF-CArG complex. Given that Notch pathway components are expressed in vascular SMC during normal development and disease, Notch signaling is likely to play a pivotal role in such situations to modulate the vascular smooth muscle cell phenotype.  相似文献   
925.
A Bacteroides fragilis gene (argF'(bf)), the disruption of which renders the bacterium auxotrophic for arginine, was expressed and its recombinant protein purified and studied. The novel protein catalyzes the carbamylation of N-succinyl-L-ornithine but not L-ornithine or N-acetyl-L-ornithine, forming N-succinyl-L-citrulline. Crystal structures of this novel transcarbamylase complexed with carbamyl phosphate and N-succinyl-L-norvaline, as well as sulfate and N-succinyl-L-norvaline have been determined and refined to 2.9 and 2.8 A resolution, respectively. They provide structural evidence that this protein is a novel N-succinyl-L-ornithine transcarbamylase. The data provided herein suggest that B. fragilis uses N-succinyl-L-ornithine rather than N-acetyl-L-ornithine for de novo arginine biosynthesis and therefore that this pathway in Bacteroides is different from the canonical arginine biosynthetic pathway of most organisms. Comparison of the structures of the new protein with those recently reported for N-acetyl-L-ornithine transcarbamylase indicates that amino acid residue 90 (B. fragilis numbering) plays an important role in conferring substrate specificity for N-succinyl-L-ornithine versus N-acetyl-L-ornithine. Movement of the 120 loop upon substrate binding occurs in N-succinyl-L-ornithine transcarbamylase, while movement of the 80 loop and significant domain closure take place as in other transcarbamylases. These findings provide new information on the putative role of succinylated intermediates in arginine biosynthesis and on the evolution of transcarbamylases.  相似文献   
926.
Phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), is an important constituent of biological membranes. It is also the major component of serum lipoproteins and pulmonary surfactant. In the remodeling pathway of PC biosynthesis, 1-acyl-sn-glycero-3-phosphocholine (LPC) is converted to PC by acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT, EC 2.3.1.23). Whereas LPCAT activity has been detected in several tissues, the structure and detailed biochemical information on the enzyme have not yet been reported. Here, we present the cloning and characterization of a cDNA for mouse lung-type LPCAT (LPCAT1). The cDNA encodes an enzyme of 60 kDa, with three putative transmembrane domains. When expressed in Chinese hamster ovary cells, mouse LPCAT1 exhibited Ca(2+)-independent activity with a pH optimum between 7.4 and 10. LPCAT1 demonstrated a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl- or 1-palmitoyl-LPC as acyl donors and acceptors, respectively. Furthermore, the enzyme was predominantly expressed in the lung, in particular in alveolar type II cells. Thus, the enzyme might synthesize phosphatidylcholine in pulmonary surfactant and play a pivotal role in respiratory physiology.  相似文献   
927.
Primordial germ cells (PGCs) are germ cell precursors that are committed to sperm or oocytes. Dramatic proliferation during PGC development determines the number of founder spermatogonia and oocytes. Although specified to a germ lineage, PGCs produce pluripotent embryonic germ (EG) cells in vitro and testicular teratomas in vivo. Wnt/beta-catenin signaling regulates pluripotency and differentiation in various stem cell systems, and dysregulation of this signaling causes various human cancers. Here, we examined the role of Wnt/beta-catenin signaling in PGC development. In normal PGC development, Wnt/beta-catenin signaling is suppressed by the GSK3beta-mediated active degradation of beta-catenin and the low expression of canonical Wnt molecules. The effects of aberrant activation of Wnt/beta-catenin signaling in PGCs were analyzed using mice carrying a deletion of the exon that encodes the GSK3beta phosphorylation sites in the beta-catenin locus. Despite the potential activity of Wnt/beta-catenin signaling in stem cell maintenance and carcinogenesis in various cell lineages, teratomas were not induced in the mice expressing the nuclear-localized beta-catenin in PGCs. Instead, the mutant mice showed germ cell deficiency caused by the delayed cell cycle progression of the proliferative phase PGCs. Our results show that the suppression of Wnt/beta-catenin signaling is a prerequisite for the normal development of PGCs.  相似文献   
928.
We have isolated the Xenopus ortholog of ADAMTS1 (a disintegrin and metalloprotease with thrombospondin motifs), XADAMTS1, which is expressed in the presumptive ectoderm, then the Spemann organizer, and later in the trunk organizer region and posterior ectoderm in the Xenopus embryo. We show that, when overexpressed in the dorsal marginal zone or in the anterior ectoderm by mRNA injection, XADAMTS1 inhibits gastrulation or generates embryos with an enlarged cement gland, respectively. XADAMTS1 also reduces the expression of Xbra in both whole embryos and FGF-treated animal caps. These effects of XADAMTS1 are likely to be due to its inhibition of the Ras-MAPK cascade because XADAMTS1 inhibits the phosphorylation of ERK by FGF4 in animal caps. Deletion analysis of XADAMTS1 revealed that a combination of the signal peptide and the C-terminal region containing the thrombospondin type 1 repeats is necessary and sufficient for this function, whereas the metalloprotease domain is dispensable. In addition, loss-of-function analysis with antisense morpholino oligos showed that knockdown of XADAMTS1 sensitizes animal caps to Xbra induction by FGF2. These data suggest that secreted XADAMTS1 negatively modulates FGF signaling in the Xenopus embryo.  相似文献   
929.
Although balanced translocations are among the most common human chromosomal aberrations, the constitutional t(11;22)(q23;q11) is the only known recurrent non-Robertsonian translocation. Evidence indicates that de novo formation of the t(11;22) occurs during meiosis. To test the hypothesis that spatial proximity of chromosomes 11 and 22 in meiotic prophase oocytes and spermatocytes plays a role in the rearrangement, the positions of the 11q23 and 22q11 translocation breakpoints were examined. Fluorescence in situ hybridization with use of DNA probes for these sites demonstrates that 11q23 is closer to 22q11 in meiosis than to a control at 6q26. Although chromosome 21p11, another control, often lies as close to 11q23 as does 22q11 during meiosis, chromosome 21 rarely rearranges with 11q23, and the DNA sequence of chromosome 21 appears to be less susceptible than 22q11 to double-strand breaks (DSBs). It has been suggested that the rearrangement recurs as a result of the palindromic AT-rich repeats at both 11q23 and 22q11, which extrude hairpin structures that are susceptible to DSBs. To determine whether the DSBs at these sites coincide with normal hotspots of meiotic recombination, immunocytochemical mapping of MLH1, a protein involved in crossing over, was employed. The results indicate that the translocation breakpoints do not coincide with recombination hotspots and therefore are unlikely to be the result of meiotic programmed DSBs, although MRE11 is likely to be involved. Previous analysis indicated that the DSBs appear to be repaired by a mechanism similar to nonhomologous end joining (NHEJ), although NHEJ is normally suppressed during meiosis. Taken together, these studies support the hypothesis that physical proximity between 11q23 and 22q11--but not typical meiotic recombinational activity in meiotic prophase--plays an important role in the generation of the constitutional t(11;22) rearrangement.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号