首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5680篇
  免费   353篇
  国内免费   2篇
  6035篇
  2023年   16篇
  2022年   53篇
  2021年   93篇
  2020年   44篇
  2019年   63篇
  2018年   106篇
  2017年   61篇
  2016年   127篇
  2015年   196篇
  2014年   212篇
  2013年   348篇
  2012年   310篇
  2011年   360篇
  2010年   204篇
  2009年   187篇
  2008年   315篇
  2007年   303篇
  2006年   260篇
  2005年   260篇
  2004年   301篇
  2003年   245篇
  2002年   257篇
  2001年   157篇
  2000年   163篇
  1999年   143篇
  1998年   66篇
  1997年   64篇
  1996年   55篇
  1995年   42篇
  1994年   47篇
  1993年   56篇
  1992年   90篇
  1991年   93篇
  1990年   78篇
  1989年   83篇
  1988年   77篇
  1987年   52篇
  1986年   51篇
  1985年   52篇
  1984年   48篇
  1983年   35篇
  1982年   21篇
  1981年   27篇
  1980年   21篇
  1979年   26篇
  1978年   28篇
  1977年   18篇
  1976年   28篇
  1975年   14篇
  1973年   16篇
排序方式: 共有6035条查询结果,搜索用时 0 毫秒
21.
Tumor necrosis factor-alpha (TNF-alpha) has been shown to enhance the synthesis of interleukin-6 (IL-6) and collagenase in human omental microvascular endothelial (HOME) cell (Mawatari, M., Kohno, K., Mizoguchi, H., Matsuda, T., Asoh, K., Van Damme, J. V., Welgus, H. G., and Kuwano, M. (1989) J. Immunol. 143, 1619-1627). In the present study, we have examined whether the TNF-alpha-induced synthesis of IL-6 or collagenase in HOME cells is mediated by an inducible growth factor. Among several growth factors examined, we found that the expression of basic fibroblast growth factor (bFGF) mRNA was the one most prominently enhanced when HOME cells were treated with TNF-alpha. The increase of bFGF mRNA by TNF-alpha in HOME cells was observed in both a dose- and time-dependent manner when assayed by Northern blot analysis. The induction of bFGF mRNA was observed by 3 h after incubation with TNF-alpha, and the maximal increase of 5-fold was obtained after 12 h of incubation with 100 units/ml TNF-alpha. Western blot analysis confirmed the enhanced synthesis of bFGF by TNF-alpha. Metabolic labeling and immunoprecipitation assays of bFGF showed that exposure to TNF-alpha enhanced secretion of bFGF into culture medium and also that TNF-alpha stimulated the production of bFGF molecules with molecular masses of 18, 21, and 22.5 kDa in HOME cells. TNF-alpha induced the expression of collagenase mRNA and IL-6 mRNA in HOME cells as well, and the coadministration of neutralizing anti-bFGF antibody almost completely blocked the effects of TNF-alpha. The treatment of HOME cells with exogenous bFGF significantly stimulated the expression of collagenase mRNA and IL-6 mRNA in HOME cells. Therefore, the biological effects of TNF-alpha on HOME cells may be mediated, at least in part, by TNF-alpha-induced bFGF.  相似文献   
22.
Prolonged thrombin time was completely corrected by the addition of millimolar concentrations of calcium in a new abnormal fibrinogen, Osaka V. Analysis of lysyl endopeptidase digests of A alpha-, B beta-, or gamma-chains by high performance liquid chromatography, and the following amino acid sequence analysis of relevant peptides revealed that about 50% of the gamma-chain has a replacement of gamma-arginine 375 by glycine. When fibrinogen was digested with plasmin in the presence of millimolar concentration of calcium, the amount of fragment D1 was about 50% of the normal control, and the rest was further cleaved to fragment D2, D3, or D62 with an apparent Mr of 62,000. Plasmic digestion of cross-linked fibrin in the presence of calcium resulted in the appearance of an abnormal fragment with an apparent Mr of 123,000 as well as fragments D2, D3, and D62, concomitant with the decrease of D dimer. The gamma-remnant of the abnormal fragment proved to be a cross-linked complex of the normal D1 gamma-remnant and residues 374-406/411 of the abnormal gamma-chain. The number of high affinity Ca(2+)-binding sites for the normal fibrinogen and fibrinogen Osaka V obtained by equilibrium dialysis was 2.88 (about 3) and 1.85, respectively, and that for the abnormal molecules was calculated as 0.9 (about 1) from their relative amounts in the samples, suggesting the lack of two Ca(2+)-binding sites in the D-domains. These data suggest that the normal structure of the COOH-terminal portion of the gamma-chain including residue 375 is required for the full expression of high affinity calcium binding to D-domains, the ability to be protected by calcium against plasmic digestion, and fibrin polymerization. During these studies, we found that the NH2-terminal amino acid of the gamma-remnant in fragments D or D dimer which were obtained after prolonged digestion with plasmin is gamma-Met89.  相似文献   
23.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   
24.
The nucleotide and amino acid sequences for rat type I angiotensin II receptor were deduced through molecular cloning and sequence analysis of its complementary DNAs. The rat angiotensin II receptor consists of 359 amino acid residues and has a sequence similar to G protein-coupled receptors. The expression of this receptor gene was detected in the adrenal, liver and kidney by Northern blotting. Sodium deprivation positively modulated the expression of the receptor gene in the adrenal. No detectable change was observed in the expression levels of this receptor gene between spontaneously hypertensive rats and Wistar-Kyoto rats in the tissues examined including the adrenal, brain, kidney and liver. Interestingly the expression of this receptor gene was developmentally regulated.  相似文献   
25.
Arachidonate 12-lipoxygenase of porcine leukocytes, which was purified to homogeneity by immunoaffinity chromatography, was analyzed for iron content by atomic absorption spectrophotometry. The enzyme contained 0.70 +/- 0.09 g atom of iron per mol of enzyme (mean +/- S.D., n = 4). Inorganic iron, which was added to the enzyme solution as an internal standard, was recovered in almost 100% yield. Among various iron chelators tested, only 2,2'-dipyridyl at 1 mM inactivated the enzyme by 87%, but the enzyme was not reactivated by the addition of excess ferrous or ferric iron.  相似文献   
26.
Summary A human yolk sac tumor cell line, TG1, which was established from a testicular yolk sac tumor, was found to replicate continuously in a chemically defined medium supplemented with Na2SeO3 (ISRPMI). TG1 produced several plasma proteins and growth factors: albumin, alpha-fetoprotein (AFP), ferritin, carcinoembryonic antigen, beta-2-microglobulin, polyamine, neuron specific enolase, tissue polypeptide antigen, transferrin (Tf), epidermal growth factor, and platelet derived growth factor. By analysis of lectin (LcHA)-affinity electrophoresis, to examine the microheterogeneity of carbohydrate chains of synthetic glycoproteins, TG1 cells cultured with ISRPMI produced only LcHA reactive Tf and AFP based on core fucose attached to asparagine-linkedN-acetylglucosamine residues instead of LcHA-nonreactive Tf and AFP produced by TG1 cells cultured with fetal bovine serum (FBS)-containing medium.α1-6 Fucosyltransferase activity was significantly greater in the TG1 cells cultured with ISRPMI (39.9±1.5 pmol · h−1 · mg−1 protein) than cultured with FBS-containing media (18.2±1.2 pmol · h−1 · mg−1 protein). These results have indicated that the selective increase ofα1-6 fucosyltransferase occurred when the cells were cultured with the FBS-free synthetic media.  相似文献   
27.
28.
Dextransucrase [EC 2.4.1.5] activity from cell-free culture supernatant of Leuconostoc mesenteroides NRRL B-1299 was purified by (NH4)2SO4 fractionation, adsorption on hydroxyapatite, chromatography on DEAE-cellulose and gel filtration on Sephadex G-75. The extracellular enzyme was separated into two principal forms, enzymes I and N, and the latter was shown to be an aggregated form of the protomer, enzyme I. Enzymes I and N were both electrophoretically homogeneous and their relative activities reached 820 and 647 times that of the culture supernatant, respectively. On sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis, enzyme N dissociated into the protomer enzyme I, with a molecular weight of 48,000. Enzyme I was gradually converted into enzyme N upon aging, and this conversion was stimulated in the presence of NaCl. The optimum pH and temperature of enzyme I activity were pH 6.0 and 40 degrees, respectively, while those of enzyme N were pH 5.5 and 35 degrees. The Km values of enzymes I and N were 13.9 and 13.1 mM, respectively. Ca2+, Mg2+, Fe2+, and Co2+ stimulated the activity of enzyme N, and EDTA showed a potent inhibitory effect on this enzyme. Moreover, the activity of enzyme N was more effectively stimulated by exogenous dextrans as compared with enzyme I.  相似文献   
29.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
30.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号