首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2625篇
  免费   156篇
  2023年   10篇
  2022年   30篇
  2021年   57篇
  2020年   32篇
  2019年   41篇
  2018年   76篇
  2017年   49篇
  2016年   83篇
  2015年   133篇
  2014年   137篇
  2013年   183篇
  2012年   198篇
  2011年   211篇
  2010年   117篇
  2009年   111篇
  2008年   178篇
  2007年   175篇
  2006年   143篇
  2005年   133篇
  2004年   147篇
  2003年   109篇
  2002年   117篇
  2001年   14篇
  2000年   15篇
  1999年   24篇
  1998年   27篇
  1997年   23篇
  1996年   22篇
  1995年   19篇
  1994年   17篇
  1993年   18篇
  1992年   14篇
  1991年   24篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   10篇
  1983年   5篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1972年   2篇
  1964年   1篇
  1959年   1篇
排序方式: 共有2781条查询结果,搜索用时 15 毫秒
991.
Nonalcoholic steatohepatitis (NASH) is a disorder characterized by simultaneous fat accumulation and chronic inflammation in the liver. In this study, Pin1 expression was revealed to be markedly increased in the livers of mice with methionine choline-deficient (MCD) diet-induced NASH, a rodent model of NASH. In addition, Pin1 KO mice were highly resistant to MCD-induced NASH, based on a series of data showing simultaneous fat accumulation, chronic inflammation, and fibrosis in the liver. In terms of Pin1-induced fat accumulation, it was revealed that the expression levels of peroxisome proliferator-activated receptor α and its target genes were higher in the livers of Pin1 KO mice than in controls. Thus, resistance of Pin1 KO mice to hepatic steatosis is partially attributable to the lack of Pin1-induced down-regulation of peroxisome proliferator-activated receptor α, although multiple other mechanisms are apparently involved. Another mechanism involves the enhancing effect of hematopoietic Pin1 on the expressions of inflammatory cytokines such as tumor necrosis factor and monocyte chemoattractant protein 1 through NF-κB activation, eventually leading to hepatic fibrosis. Finally, to distinguish the roles of hematopoietic or nonhematopoietic Pin1 in NASH development, mice lacking Pin1 in either nonhematopoietic or hematopoietic cells were produced by bone marrow transplantation between wild-type and Pin1 KO mice. The mice having nonhematopoietic Pin1 exhibited fat accumulation without liver fibrosis on the MCD diet. Thus, hepatic Pin1 appears to be directly involved in the fat accumulation in hepatocytes, whereas Pin1 in hematopoietic cells contributes to inflammation and fibrosis. In summary, this is the first study to demonstrate that Pin1 plays critical roles in NASH development. This report also raises the possibility that hepatic Pin1 inhibition to the appropriate level might provide a novel therapeutic strategy for NASH.  相似文献   
992.
Phenylenediamine derivatives can function as a hydrogen donor and reportedly exert various biological actions including cytoprotective effects against oxidative stress, possibly by acting as an antioxidant. Previous studies showed that feeding of such compounds to mice reduced their body weight, but the precise mechanism remains unknown at present. Here, we found that these compounds inhibited the in vitro differentiation of mouse preadipocytes, 3T3-L1 cells, into adipocytes, suggesting that, at least in part, reduced generation of adipocytes might contribute to the observed weight loss in mice. Next, we performed array analysis and found that the expression of GDF-15/MIC-1, which is a TGFβ superfamily cytokine, and Trib 3, an intracellular downstream effector of the cytokines, was up-regulated by these derivatives. Thus, we identified the compounds as inducers of GDF-15/MIC-1 and suggest that such induction may have led to inhibition of adipocyte differentiation, which could account for the weight-loss effect of these compounds.  相似文献   
993.
Membrane proteins that respond to changes in transmembrane voltage are critical in regulating the function of living cells. The voltage-sensing domains (VSDs) of voltage-gated ion channels are extensively studied to elucidate voltage-sensing mechanisms, and yet many aspects of their structure-function relationship remain elusive. Here, we transplanted homologous amino acid motifs from the tetrameric voltage-activated potassium channel Kv3.1 to the monomeric VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) to explore which portions of Kv3.1 subunits depend on the tetrameric structure of Kv channels and which properties of Kv3.1 can be transferred to the monomeric Ci-VSP scaffold. By attaching fluorescent proteins to these chimeric VSDs, we obtained an optical readout to establish membrane trafficking and kinetics of voltage-dependent structural rearrangements. We found that motifs extending from 10 to roughly 100 amino acids can be readily transplanted from Kv3.1 into Ci-VSP to form engineered VSDs that efficiently incorporate into the plasma membrane and sense voltage. Some of the functional features of these engineered VSDs are reminiscent of Kv3.1 channels, indicating that these properties do not require interactions between Kv subunits or between the voltage sensing and the pore domains of Kv channels.  相似文献   
994.
995.
Seedling vigor is among the major determinants of stable stand establishment in direct-seeded rice (Oryza sativa L.) in temperate regions. Quantitative trait loci (QTL) for seedling vigor were identified using 250 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars Kakehashi and Dunghan Shali. Seedling heights measured at 14 days after sowing were 20.3 and 29.4 cm for Kakehashi and Dunghan Shali, respectively. For the RILs, the height ranged from 14.1 to 31.7 cm. Four putative QTLs associated with seedling height were detected. qPHS3-2, the major QTL that was located on the long arm of chromosome 3, accounted for 26.2 % of the phenotypic variance. Using progeny of the near isogenic lines (NILs) produced by the backcross introduction of a chromosome segment carrying this major QTL into an elite cultivar Iwatekko, we fine-mapped qPHS3-2 to a 81-kb interval between two markers, ID_CAPS_01 and RM16227. Within this mapped region, we identified the gene OsGA20ox1, which is related to gibberellin (GA) biosynthesis. The relative expression levels of GA20ox1 in seedlings of Dunghan Shali and NILs were higher than that of Iwatekko. Concomitantly, the amount of endogenous active GA was higher in Dunghan Shali and the NILs compared to the level detected in Iwatekko. These results indicate that OsGA20ox1 is a strong candidate gene for major QTL controlling seedling vigor in rice.  相似文献   
996.
997.
We investigated the muscle activation pattern of the lower limbs for the stopping motion of baseball batting by recording surface electromyography (EMG) from 8 muscles, the left and right rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG) muscles. First, muscle activities for 'Swing' and 'Stopping' trials were examined in 10 skilled baseball players and 10 unskilled novices. Second, the characteristics of EMG activities for 'Stopping' were compared between the 2 groups. The peak latencies of EMG were significantly shorter in 'Stopping' than in 'Swing' at the right-TA, left-BF, and left-MG between both groups. The peak amplitudes of EMG activity were significantly larger in 'Swing' than in 'Stopping' at the right-TA, left-BF, and left-MG in both groups. In addition, the peak amplitudes of EMG activity for 'Stopping' were significantly larger in the players than in novices at the right-RF and right-TA. The characteristics of EMG activity clearly differed between 'Swing' and 'Stopping,' and between baseball players and nonplayers, indicating that evaluating the EMG activity in batting enables the understanding of proficiency. Our findings should help players, novices, and coaches to optimize batting performance.  相似文献   
998.
999.
Mieap, a p53-inducible protein, controls mitochondrial quality by repairing unhealthy mitochondria. During repair, Mieap induces the accumulation of intramitochondrial lysosomal proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria) by interacting with NIX, leading to the elimination of oxidized mitochondrial proteins. Here, we report that an additional mitochondrial outer membrane protein, BNIP3, is also involved in MALM. BNIP3 interacts with Mieap in a reactive oxygen species (ROS)-dependent manner via the BH3 domain of BNIP3 and the coiled-coil domains of Mieap. The knockdown of endogenous BNIP3 expression severely inhibited MALM. Although the overexpression of either BNIP3 or NIX did not cause a remarkable change in the mitochondrial membrane potential (MMP), the co-expression of all three exogenous proteins, Mieap, BNIP3 and NIX, caused a dramatic reduction in MMP, implying that the physical interaction of Mieap, BNIP3 and NIX at the mitochondrial outer membrane may regulate the opening of a pore in the mitochondrial double membrane. This effect was not related to cell death. These results suggest that two mitochondrial outer membrane proteins, BNIP3 and NIX, mediate MALM in order to maintain mitochondrial integrity. The physical interaction of Mieap, BNIP3 and NIX at the mitochondrial outer membrane may play a critical role in the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号