首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2398篇
  免费   99篇
  2021年   32篇
  2020年   10篇
  2019年   18篇
  2018年   34篇
  2017年   32篇
  2016年   51篇
  2015年   74篇
  2014年   81篇
  2013年   181篇
  2012年   155篇
  2011年   156篇
  2010年   96篇
  2009年   78篇
  2008年   135篇
  2007年   126篇
  2006年   124篇
  2005年   134篇
  2004年   132篇
  2003年   116篇
  2002年   124篇
  2001年   52篇
  2000年   62篇
  1999年   46篇
  1998年   29篇
  1997年   23篇
  1996年   24篇
  1995年   23篇
  1994年   27篇
  1993年   24篇
  1992年   31篇
  1991年   33篇
  1990年   27篇
  1989年   35篇
  1988年   16篇
  1987年   16篇
  1986年   10篇
  1985年   9篇
  1984年   9篇
  1983年   8篇
  1982年   10篇
  1981年   14篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1975年   7篇
  1974年   7篇
  1973年   9篇
  1972年   6篇
  1971年   6篇
  1969年   6篇
排序方式: 共有2497条查询结果,搜索用时 632 毫秒
871.
Toll-like receptor 2 (TLR2) recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R) injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO), a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and cyclooxygenase-2 (COX-2) in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory mediators such as TNF-α and ICAM-1.  相似文献   
872.
Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to early-stage chemically induced skin papillomas on chromosome 7 with a large number of [(FVB/N×MSM/Ms)×FVB/N] F1 backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 7. We used linkage analysis and congenic mouse strains to refine the location of Stmm1 (Skin tumor modifier of MSM 1) locus within a genetic interval of about 3 cM on proximal chromosome 7. In addition, we used patterns of allele-specific imbalances in tumors from F1 backcross and N10 congenic mice to narrow down further the region of Stmm1 locus to a physical distance of about 5.4 Mb. To gain the insight into the function of Stmm1 locus, we carried out a long term BrdU labelling experiments with congenic mice containing Stmm1 locus. Interestingly, we observed a decrease of BrdU-LRCs (Label Retaining Cells) in a congenic strain heterozygous or homozygous for MSM allele of Stmm1. These results suggest that Stmm1 responsible genes may have an influence on papillomagenesis in the two-stage skin carcinogenesis by regulating epidermal quiescent stem cells.  相似文献   
873.
The synthesis of DNA, RNA, and de novo proteins is fundamental for early development of the seedling after germination, but such processes release pyrophosphate (PPi) as a byproduct of ATP hydrolysis. The over-accumulation of the inhibitory metabolite PPi in the cytosol hinders these biosynthetic reactions. All living organisms possess ubiquitous enzymes collectively called inorganic pyrophosphatases (PPases), which catalyze the hydrolysis of PPi into two orthophosphate (Pi) molecules. Defects in PPase activity cause severe developmental defects and/or growth arrest in several organisms. In higher plants, a proton-translocating vacuolar PPase (H+­PPase) uses the energy of PPi hydrolysis to acidify the vacuole. However, the biological implications of PPi hydrolysis are vague due to the widespread belief that the major role of H+­PPase in plants is vacuolar acidification. We have shown that the Arabidopsis fugu5 mutant phenotype, caused by a defect in H+­PPase activity, is rescued by complementation with the yeast cytosolic PPase IPP1. In addition, our analyses have revealed that increased cytosolic PPi levels impair postgerminative development in fugu5 by inhibiting gluconeogenesis. This led us to the conclusion that the role of H+­PPase as a proton-pump is negligible. Here, we present further evidence of the growth-boosting effects of removing PPi in later stages of plant vegetative development, and briefly discuss the biological role of PPases and their potential applications in different disciplines and in various organisms.  相似文献   
874.
We screened 46 novel anilinoquinazoline derivatives for activity to inhibit proliferation of a panel of human cancer cell lines. Among them, Q15 showed potent in vitro growth-inhibitory activity towards cancer cell lines derived from colorectal cancer, lung cancer and multiple myeloma. It also showed antitumor activity towards multiple myeloma KMS34 tumor xenografts in lcr/scid mice in vivo. Unlike the known anilinoquinazoline derivative gefitinib, Q15 did not inhibit cytokine-mediated intracellular tyrosine phosphorylation. Using our mRNA display technology, we identified hCAP-G2, a subunit of condensin II complex, which is regarded as a key player in mitotic chromosome condensation, as a Q15 binding partner. Immunofluorescence study indicated that Q15 compromises normal segregation of chromosomes, and therefore might induce apoptosis. Thus, our results indicate that hCAP-G2 is a novel therapeutic target for development of drugs active against currently intractable neoplasms.  相似文献   
875.
The murine stem cell virus (MSCV) promoter exhibits activity in mouse hematopoietic cells and embryonic stem cells. We generated transgenic mice that expressed enhanced green fluorescent protein (GFP) under the control of the MSCV promoter. We obtained 12 transgenic founder mice through 2 independent experiments and found that the bodies of 9 of the founder neonates emitted different levels of GFP fluorescence. Flow cytometric analysis of circulating leukocytes revealed that the frequency of GFP-labeled leukocytes among white blood cells ranged from 1.6% to 47.5% across the 12 transgenic mice. The bodies of 9 founder transgenic mice showed various levels of GFP expression. GFP fluorescence was consistently observed in the cerebellum, with faint or almost no fluorescence in other brain regions. In the cerebellum, 10 founders exhibited GFP expression in Purkinje cells at frequencies of 3% to 76%. Of these, 4 mice showed Purkinje cell-specific expression, while 4 and 2 mice expressed GFP in the Bergmann glia and endothelial cells, respectively. The intensity of the GFP fluorescence in the body was relative to the proportion of GFP-positive leukocytes. Moreover, the frequency of the GFP-expressing leukocytes was significantly correlated with the frequency of GFP-expressing Purkinje cells. These results suggest that the MSCV promoter is useful for preferentially expressing a transgene in Purkinje cells. In addition, the proportion of transduced leukocytes in the peripheral circulation reflects the expression level of the transgene in Purkinje cells, which can be used as a way to monitor transgene expression properties in the cerebellum without invasive techniques.  相似文献   
876.
The application of matrix-assisted laser desorption/ionization (MALDI)-based mass spectrometry (MS) to the proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue presents significant technical challenges. In situ enzymatic digestion is frequently used to unlock formalin-fixed tissues for analysis, but the results are often unsatisfactory. Here, we report a new, simplified in situ pretreatment method for preparing tissue sections for MS that involves heating with vapor containing acetonitrile in a small airtight pressurized space. The utility of the novel method is shown using FFPE tissue of human colon carcinoma. The number and intensity of MALDI peaks obtained from analysis of pretreated tissue was significantly higher than control tissue not subjected to pretreatment. A prominent peak (m/z 850) apparently specific to cancerous tissue was identified as a fragment of histone H2A in FFPE tissue pretreated using our method. This highly sensitive treatment may enable MALDI-MS analysis of archived pathological FFPE samples, thus leading to the identification of new biomarkers.  相似文献   
877.
Phosphatidylinositol binding clathrin assembly protein (PICALM), also known as clathrin assembly lymphoid myeloid leukemia protein (CALM), was originally isolated as part of the fusion gene CALM/AF10, which results from the chromosomal translocation t(10;11)(p13;q14). CALM is sufficient to drive clathrin assembly in vitro on lipid monolayers and regulates clathrin-coated budding and the size and shape of the vesicles at the plasma membrane. However, the physiological role of CALM has yet to be elucidated. Here, the role of CALM in vivo was investigated using CALM-deficient mice. CALM-deficient mice exhibited retarded growth in utero and were dwarfed throughout their shortened life-spans. Moreover, CALM-deficient mice suffered from severe anemia, and the maturation and iron content in erythroid precursors were severely impaired. CALM-deficient erythroid cells and embryonic fibroblasts exhibited impaired clathrin-mediated endocytosis of transferrin. These results indicate that CALM is required for erythroid maturation and transferrin internalization in mice.  相似文献   
878.

Background

TNF-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) selectively induces apoptosis in various cancer cells including myeloma (MM) cells. However, the susceptibility of MM cells to TRAIL is largely low in most of MM cells by yet largely unknown mechanisms. Because TNF-α converting enzyme (TACE) can cleave some TNF receptor family members, in the present study we explored the roles of proteolytic modulation by TACE in TRAIL receptor expression and TRAIL-mediated cytotoxicity in MM cells.

Methodology/Principal Findings

MM cells preferentially expressed death receptor 4 (DR4) but not DR5 on their surface along with TACE. Conditioned media from RPMI8226 and U266 cells contained a soluble form of DR4. The DR4 levels in these conditioned media were reduced by TACE inhibition by the TACE inhibitor TAPI-0 as well as TACE siRNA. Conversely, the TACE inhibition restored surface levels of DR4 but not DR5 in these cells without affecting DR4 mRNA levels. The TACE inhibition was able to restore cell surface DR4 expression in MM cells even in the presence of bone marrow stromal cells or osteoclasts, and enhanced the cytotoxic effects of recombinant TRAIL and an agonistic antibody against DR4 on MM cells.

Conclusions/Significance

These results demonstrate that MM cells post-translationally down-modulate the cell surface expression of DR4 through ectodomain shedding by endogenous TACE, and that TACE inhibition is able to restore cell surface DR4 levels and the susceptibility of MM cells to TRAIL or an agonistic antibody against DR4. Thus, TACE may protect MM cells from TRAIL-mediated death through down-modulation of cell-surface DR4. It can be envisaged that TACE inhibition augments clinical efficacy of TRAIL-based immunotherapy against MM, which eventually becomes resistant to the present therapeutic modalities.  相似文献   
879.
Despite the introduction of newly developed drugs such as lenalidomide and bortezomib, patients with multiple myeloma are still difficult to treat and have a poor prognosis. In order to find novel drugs that are effective for multiple myeloma, we tested the antitumor activity of 29 phthalimide derivatives against several multiple myeloma cell lines. Among these derivatives, 2-(2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3- dione (TC11) was found to be a potent inhibitor of tumor cell proliferation and an inducer of apoptosis via activation of caspase-3, 8 and 9. This compound also showed in vivo activity against multiple myeloma cell line KMS34 tumor xenografts in ICR/SCID mice. By means of mRNA display selection on a microfluidic chip, the target protein of TC11 was identified as nucleophosmin 1 (NPM). Binding of TC11 and NPM monomer was confirmed by surface plasmon resonance. Immunofluorescence and NPM knockdown studies in HeLa cells suggested that TC11 inhibits centrosomal clustering by inhibiting the centrosomal-regulatory function of NPM, thereby inducing multipolar mitotic cells, which undergo apoptosis. NPM may become a novel target for development of antitumor drugs active against multiple myeloma.  相似文献   
880.
In our previous proteomic study in rat liver damaged by carbon tetrachloride, soluble catechol-O-methyltransferase (COMT) increased as a phosphorylated form and decreased as a dephosphorylated form. This finding raised the possibility that the COMT protein is associated with liver function. Thus, we hypothesized that (1) the COMT gene contributes to liver homeostasis and (2) a COMT polymorphism (rs4680: Val158Met) causing thermolability of enzymatic activity affects liver enzymes (e.g., aspartate aminotransferase (AST), alanine aminotransferase (ALT) and gamma-glutamyl transpeptidase (γ-GT)) in serum. To investigate (2), we statistically analyzed the association between COMT genotypes and serum ALT activity in a cross-sectional study using data from the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. We conducted a multiple logistic regression analysis for males (n=838) and females (n=970). Those participants having missing values or a past history of liver cirrhosis or liver cancer were excluded. ALT values were divided into two; elevated (30IU/L ≤; males n=239, females n=90) and normal (<30IU/L; males n=599, females n=880). In females, non-adjusted and adjusted odds ratios for ALT values in the rs4680 A/A homozygote (n=126) compared with the wild-type G/G homozygote (n=397) were 0.37 (95% CI 0.14-0.96) and 0.34 (95% CI 0.13-0.93), respectively. In males, an analysis of the population aged 35-69 did not reveal any significant difference, but the population aged 45-54 had a significant difference in the non-adjusted and adjusted odds ratio in the G/A heterozygote (n=89) (0.50 (95% CI 0.27-0.92) and 0.35 (95% CI 0.18-0.71)) and in the A/A homozygote (n=22) (0.34 (95% CI 0.11-0.99) and 0.22 (95% CI 0.07-0.72)), compared with the G/G homozygote (n=88). These data suggest that the COMT polymorphism affects serum ALT activity to maintain liver function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号