首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2119篇
  免费   83篇
  2022年   6篇
  2021年   28篇
  2020年   13篇
  2019年   24篇
  2018年   33篇
  2017年   35篇
  2016年   50篇
  2015年   68篇
  2014年   86篇
  2013年   151篇
  2012年   151篇
  2011年   159篇
  2010年   108篇
  2009年   71篇
  2008年   125篇
  2007年   115篇
  2006年   110篇
  2005年   104篇
  2004年   111篇
  2003年   89篇
  2002年   102篇
  2001年   19篇
  2000年   24篇
  1999年   22篇
  1998年   23篇
  1997年   20篇
  1996年   11篇
  1995年   17篇
  1994年   19篇
  1993年   21篇
  1992年   13篇
  1991年   18篇
  1990年   15篇
  1989年   17篇
  1988年   14篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   12篇
  1983年   7篇
  1982年   11篇
  1981年   12篇
  1980年   6篇
  1979年   6篇
  1977年   7篇
  1976年   8篇
  1974年   7篇
  1970年   6篇
  1969年   13篇
  1937年   5篇
排序方式: 共有2202条查询结果,搜索用时 125 毫秒
151.
152.
153.
The effect of agar plates on the bacterial cellulose (BC) production in a static culture was investigated in order to find the role of agar component as a surface modifying agent. Two types of surface modified reactors (SMRs: SMRD and SMRB) were prepared by coating the bottom of the reactors with agar dissolved in distilled water and basal medium, respectively. The SMRs were used for BC and water soluble oligosaccharides (WSOS) production. Control was done by the same procedure using reactors without agar plate. In both types of SMRs, the maximum production rate was observed after the second day of cultivation compared to third day of cultivation in the case of the control. The maximum productions of BC 5.308 and 5.472 g/L were observed at the first batch using SMRs prepared with agar dissolved in distilled water (SMRDs) and SMRs prepared with agar dissolved in a basal medium (SMRBs), respectively. Similarly, in the daily-culture and successive batch strategy experiments the maximum amount of WSOS produced in the SMRs was almost double that of the control. The highest water holding capacity value 92.21 g/g was observed for BC formed in the SMRs prepared with 3.0% of agar. FTIR and XRD analyses were carried out to study the structural features of the prepared BC.  相似文献   
154.
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.  相似文献   
155.
We specifically examined an exopeptidase, prolyl aminopeptidase (PAP), as a target for synthesis of proline-containing peptides. A PAP from Streptomyces thermoluteus subsp. fuscus NBRC14270 (PAP14270) was obtained using sequence-based screening. From PAP14270, 144Ser was replaced by Cys (scPAP14270) to give aminolysis activity. In contrast to wild-type PAP14270, scPAP14270 produced a polymer of proline benzyl ester and cyclo[Pro-Pro]. The product mass was confirmed using liquid chromatography-mass spectrometry (LC/MS). Several factors affecting the reaction, such as the pH, concentration of the substrate, and reaction time, were measured to determine their effects. Furthermore, a correlation was found between substrate specificity in proline peptide synthesis and the log D value of acyl acceptors in aminolysis catalyzed by scPAP14270. Results showed that dipeptide synthesis proceeded in a weakly acidic environment and that cyclization and polymerization occurred under alkaline conditions. Furthermore, results suggest that almost all amino acid esters whose log D value is greater than 0, except hydroxyproline benzyl ester (Hyp-OBzl), can be recognized as acyl acceptors. These findings support the use of PAPs as a tool for production of physiologically active proline peptides.Prolyl aminopeptidase (PAP) (EC 3.4.11.5), belonging to the S33 family, is an exopeptidase that catalyzes the hydrolysis of the N terminus prolyl residue of peptides or proteins. This family has catalytic Ser. To date, few applications of this enzyme for peptide synthesis have been reported. However, from the perspective of biotechnology, PAP might be a good tool for synthesizing proline-containing peptides by catalyzing aminolysis.Recently nutraceutical properties of peptides containing proline have received increasing attention. For example, prolyl hydroxyproline (Pro-Hyp) stimulates the growth of fibroblasts from mouse skin (11). Pro-Arg can protect against oxidative stress/damage and H2O2-induced human diploid fibroblast cell death (13). Furthermore, the lactotripeptides Ile-Pro-Pro and Val-Pro-Pro exhibit angiotensin I-converting enzyme-inhibiting activity (9). In addition to these dipeptides and tripeptides, a cyclic dipeptide (namely, diketopiperazine) containing proline shows several physiological functions. Cyclo[Pro-Pro] (cPP) exerts antibacterial activity against Micrococcus luteus and Pseudomonas aeruginosa (8). Caspase-3 activation by cyclo[Pro-Phe] in HT-29 cells has been described (3). However, its synthesis method has not been established. Enzymatic peptide synthesis presents a useful and desirable strategy because it can conduct specific reactions under milder conditions than those of chemical synthesis.Engineered endoserine proteases that have Cys substituted for catalytic Ser have also been applied for peptide synthesis since subtiligase was constructed by Abrahmsén et al. (1). Because of the weakened hydrolytic activity of the parent enzyme, it is considered that Ser/Cys-substituted protease can trap the substrate (acyl donor). Then, a nucleophilic reaction occurs between another substrate (acyl acceptor) and the trapped acyl donor (2). This is a so-called “aminolysis” reaction. Although aminolysis can conduct peptide synthesis in an aqueous solution, the problem of the necessity of using an N-protected amino acid as an acyl donor remains when using endoproteases.These problems would be solved using exoprotease as a catalyst, because N-terminal free amino groups of acyl donors are recognized by enzymes. It is rarely reported that exoprotease was applied for peptide synthesis, except in the report of Oshiro et al., in which Pro-Phe, Pro-Tyr, and Pro-Trp were synthesized (10). Recently our group reported that the Ser/Cys variant of exoprotease, aminolysin-S, has been constructed and has produced l-Phe-l-Phe ethyl ester and their derivatives from non-N-protected phenylalanine and phenylalanine ethyl ester as acyl donors in aqueous solution (12). However, aminolysin-S cannot produce proline-containing dipeptides.In this study, we describe a PAP from Streptomyces thermoluteus subsp. fuscus strain NBRC14270 (PAP14270). Furthermore, synthesis of various proline peptides was attempted through catalysis by its Ser/Cys variant (scPAP14270) from proline ester and several amino acids and their esters in aqueous solution. A basic characterization to determine the effect of pH and the amount of substrate was conducted. Moreover, correlation was found between proline peptide synthesis and the log D value, which is the distribution coefficient between octanol and water, of acyl acceptors in aminolysis mediated by scPAP14270.  相似文献   
156.
Organophosphorus compounds (OPs) such as pesticides, fungicides, and herbicides are highly toxic but are nevertheless extensively used worldwide. To detect OPs, we constructed a yeast strain that co-displays organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (EGFP) on the cell surface using a Flo1p anchor system. OP degradation releases protons and causes a change in pH. This pH change results in structural deformation of EGFP, which triggers quenching of its fluorescence, thereby making this cell useful for visual detection of OPs. Fluorescence microscopy confirmed the high-intensity fluorescence displayed by EGFP on the cell surface. The yeast strain possessed sufficient OPH hydrolytic activities for degrading OPs, as measured by incubation with 1 mM paraoxon for 24 h at 30°C. In addition, with 20 mM paraoxon at 30°C, fluorescence quenching of EGFP on the single yeast cell was observed within 40 s in a microchamber chip. These observations suggest that engineered yeast cells are suitable for simultaneous degradation and visual detection of OPs.  相似文献   
157.
DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II).Gly-Gly-His-derived metallopeptides containing D- vs. L-amino acid substitutions in the first peptide position. This examination included studies of Cu(II).D-Arg-Gly-His and Cu(II).D-Lys-Gly-His for comparison to metallopeptides containing L-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II).D/L-Pro-Gly-His and Cu(II).D/L-Pro-Lys-His. Results indicated that L-Arg/Lys to D-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA, whereas the replacement of L-Pro by D-Pro in Cu(II).L-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness observed between the D- vs. L-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the epsilon-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II).Xaa-Xaa'-His metallopeptides with DNA are also discussed.  相似文献   
158.
159.
Hamada S  Ito H  Ueno H  Takeda Y  Matsui H 《Phytochemistry》2007,68(10):1367-1375
Starch-branching enzymes (SBEs) play a pivotal role in determining the fine structure of starch by catalyzing the syntheses of alpha-1,6-branch points. They are the members of the alpha-amylase family and have four conserved regions in a central (beta/alpha)8 barrel, including the catalytic sites. Although the role of the catalytic barrel domain of an SBE is known, that of its N- and C-terminal regions remain unclear. We have previously shown that the C-terminal regions of the two SBE isozymes (designated as PvSBE1 and PvSBE2) from kidney bean (Phaseolus vulgaris L.) have different roles in branching enzyme activity. To understand the contribution of the N-terminal region to catalysis, six chimeric enzymes were constructed between PvSBE1 and PvSBE2. Only one enzyme (1Na/2Nb)-II, in which a portion of the N-terminal region of PvSBE2 was substituted by the corresponding region of PvSBE1, retained 6% of the PvSBE2 activity. The N-terminal truncated form (DeltaN46-PvSBE2), lacking 46 N-terminal residues of PvSBE2, lost enzyme activity and stability to proteolysis. To investigate the possible function of this region, three residues (Asp-15, His-24, and Arg-28) among these 46 residues were subjected to site-directed mutagenesis. The purified mutant enzymes showed nearly the same K(m) values as PvSBE2 but had lower V(max) values and heat stabilities than PvSBE2. These results suggest that the N-terminal region of the kidney bean SBE is essential for maximum enzyme activity and thermostability.  相似文献   
160.
Park SH  Kim CM  Je BI  Park SH  Park SJ  Piao HL  Xuan YH  Choe MS  Satoh K  Kikuchi S  Lee KH  Cha YS  Ahn BO  Ji HS  Yun DW  Lee MC  Suh SC  Eun MY  Han CD 《Planta》2007,227(1):1-12
OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a “blade to sheath transformation” phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::ΔOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号