首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3352篇
  免费   174篇
  国内免费   1篇
  2021年   41篇
  2019年   19篇
  2018年   39篇
  2017年   29篇
  2016年   39篇
  2015年   82篇
  2014年   99篇
  2013年   253篇
  2012年   148篇
  2011年   164篇
  2010年   122篇
  2009年   111篇
  2008年   153篇
  2007年   126篇
  2006年   123篇
  2005年   126篇
  2004年   138篇
  2003年   131篇
  2002年   158篇
  2001年   135篇
  2000年   133篇
  1999年   114篇
  1998年   54篇
  1997年   27篇
  1996年   34篇
  1995年   30篇
  1994年   20篇
  1993年   26篇
  1992年   80篇
  1991年   76篇
  1990年   71篇
  1989年   63篇
  1988年   59篇
  1987年   57篇
  1986年   49篇
  1985年   49篇
  1984年   28篇
  1983年   32篇
  1982年   24篇
  1981年   22篇
  1980年   20篇
  1979年   28篇
  1978年   19篇
  1977年   18篇
  1976年   23篇
  1975年   20篇
  1974年   27篇
  1973年   13篇
  1969年   13篇
  1968年   13篇
排序方式: 共有3527条查询结果,搜索用时 15 毫秒
81.
During photoreactivation of the O2-evolving center in Tris-inactivated/Mn-depletedthylakoids, a slow O2-consumption occurred. This O2-consumptionbecame detectable when the O2-evolving activity of thylakoidswas inactivated by Tris-treatment and decreased as photoreactivationproceeded. The O2-consumption and photoreactivation similarlyrequired Mn2+ at µM levels in addition to PSII electrondonors and shared severa common characteristics. Stimulationof O2-consumption and photoreactivation by these cofactors werealways accompanied by enhancement in chlorophyll fluorescenceinduction, suggesting the involvement of a Mehler-type reactionin photoreactivation. Although the electron transport due tothis O2-consumption was rapid enough to oxidize 4 Mn2+ ionsto reconstitute the tetranuclear Mn-cluster in each O2-evolvingcenter in a few seconds, actual recovery of O2-evolving activityoccurred more slowly in a few minutes. It was inferred thatphotoreactivation in Tris-inactivated thylakoids is not a simplephotooxidation of Mn22+ but involves more complicated processeswhich are coupled to the Mehlertype electron transport fromPSII to oxygen via PSI. (Received July 11, 1994; Accepted August 23, 1996)  相似文献   
82.
Fission yeast temperature-sensitive mutants cut3-477 and cut14-208 fail to condense chromosomes but small portions of the chromosomes can separate along the spindle during mitosis, producing phi-shaped chromosomes. Septation and cell division occur in the absence of normal nuclear division, causing the cut phenotype. Fluorescence in situ hybridization demonstrated that the contraction of the chromosome arm during mitosis was defective. Mutant chromosomes are apparently not rigid enough to be transported poleward by the spindle. Loss of the cut3 protein by gene disruption fails to maintain the nuclear chromatin architecture even in interphase. Both cut3 and cut14 proteins contain a putative nucleoside triphosphate (NTP)-binding domain and belong to the same ubiquitous protein family which includes the budding yeast Smc1 protein. The cut3 mutant was suppressed by an increase in the cut14+ gene dosage. The cut3 protein, having the highest similarity to the mouse protein, is localized in the nucleus throughout the cell cycle. Plasmids carrying the DNA topoisomerase I gene partly suppressed the temperature sensitive phenotype of cut3-477, suggesting that the cut3 protein might be involved in chromosome DNA topology.  相似文献   
83.
84.
85.
A triploid crucian carp, ginbuna ( Carassius auratus langsdorfii ), reproduces by gynogenesis, in which sperm of diploid ginbuna or of other species triggers the development of the triploid eggs, but a male genome makes no contribution to the zygotic genome. Gynogenesis is maintained by two mechanisms: exclusion of male genome during fertilization and retention of somatic ploidy levels during oogenesis. We examined the mechanisms responsible for producing unreduced eggs. Microfluorometry with a DNA staining dye showed that DNA content in the ginbuna oocytes was not reduced in half during meiosis I. Cytological observations revealed that a tripolar spindle was formed at meiosis I and the first polar body was not extruded, whereas an ordinary bipolar spindle was formed and the second polar body was extruded at meiosis II. Activity of histone H1 kinase (as an indicator of maturation-promoting factor) decreased transiently between meiosis I and II, strongly suggesting a "normal" meiotic cycle progression in the ginbuna oocytes. These results have indicated that in the gynogenetic ginbuna the somatic ploidy levels are maintained by inhibiting the first polar body extrusion via the formation of the tripolar spindle at meiosis I.  相似文献   
86.
87.
A new metabolite of cholesterol was found in reaction mixtures containing cholesterol or 4-cholesten-3-one as a substrate and extra- or intracellular protein extracts from recombinant Streptomyces lividans and Escherichia coli strains carrying cloned DNA fragments of Streptomyces sp. SA-COO, the producer of Streptomyces cholesterol oxidase. The new metabolite was identified as 4-cholesten-6-ol-3-one based on comparisons of its high-performance liquid chromatography, gas chromatography/mass spectrometry, infrared and proton-nuclear magnetic resonance spectra with those of an authentic standard. Genetic analyses showed that the enzyme responsible for the production of 4-cholesten-6-ol-3-one is cholesterol oxidase encoded by the choA gene. Commercially purified cholesterol oxidase (EC 1.1.3.6.) of a Streptomyces sp., as well as of Brevibacterium sterolicum and a Pseudomonas sp., and a highly purified recombinant Streptomyces cholesterol oxidase were also able to catalyse the 6-hydroxylation reaction. Hydrogen peroxide accumulating in the reaction mixtures as a consequence of the 3β-hydroxysteroid oxidase activity of the enzyme was shown to have no role in the formation of the 6-hydroxylated derivative. We propose a possible scheme of a branched reaction pathway for the concurrent formation of 4-cholesten-3-one and 4-chotesten-6-ol-3-one by cholesterol oxidase, and the observed differences in the rate of formation of the 6-hydroxy-ketosteroid by the enzymes of different bacterial sources are also discussed.  相似文献   
88.
Space agriculture is a concept of synthesis and operation of closed ecological system for controlling living environment and supplying materials in order to sustain life and to meet metabolic needs of space crew. It revitalizes metabolites and other excretion of crew for their recycled usage. It is an advanced concept for life support for long and large scaled manned space missions, where open loop system for materials cycle is not feasible to apply. Several issues, such as cost-benefit analysis with considering benefits of amenity and psychological factors of crew, are discussed in this essay, together with reliability and productivity of biological systems. Studies on plant physiology for inter-organismal interaction contribute to design work for space agriculture, and associate with our engagements to our future, sustainable development of our civilization both on the earth and extending to outer space.  相似文献   
89.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号