首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1893篇
  免费   111篇
  国内免费   4篇
  2008篇
  2023年   11篇
  2022年   11篇
  2021年   31篇
  2020年   9篇
  2019年   11篇
  2018年   28篇
  2017年   18篇
  2016年   43篇
  2015年   59篇
  2014年   70篇
  2013年   132篇
  2012年   147篇
  2011年   113篇
  2010年   83篇
  2009年   83篇
  2008年   116篇
  2007年   139篇
  2006年   139篇
  2005年   137篇
  2004年   132篇
  2003年   116篇
  2002年   122篇
  2001年   11篇
  2000年   7篇
  1999年   13篇
  1998年   21篇
  1997年   22篇
  1996年   14篇
  1995年   19篇
  1994年   23篇
  1993年   23篇
  1992年   15篇
  1991年   10篇
  1990年   5篇
  1989年   12篇
  1988年   6篇
  1987年   2篇
  1986年   10篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
排序方式: 共有2008条查询结果,搜索用时 15 毫秒
81.
Helicobacter hepaticus, a causal agent of hepatocarcinoma in mice, exhibits a cytolethal distending toxin activity. The three subunits of this holotoxin, CdtA, CdtB, and CdtC, and three CdtB mutants were produced as recombinant histidine-tagged proteins by using an in vitro cell-free protein expression system. We found that the presence of the three H. hepaticus Cdt subunits is required for cellular toxicity and that only a C-terminal CdtB mutation abolishes the activity of the complex. In vitro, H. hepaticus CdtB exhibits a DNase activity which is also abolished by this C-terminal CdtB mutation. These results suggest that the effect of H. hepaticus CDT probably involves the DNase activity of CdtB.  相似文献   
82.
Jonak C  Nakagami H  Hirt H 《Plant physiology》2004,136(2):3276-3283
Excessive amounts of heavy metals adversely affect plant growth and development. Whereas some regions naturally contain high levels of heavy metals, anthropogenic release of heavy metals into the environment continuously increases soil contamination. The presence of elevated levels of heavy metal ions triggers a wide range of cellular responses including changes in gene expression and synthesis of metal-detoxifying peptides. To elucidate signal transduction events leading to the cellular response to heavy metal stress we analyzed protein phosphorylation induced by elevated levels of copper and cadmium ions as examples for heavy metals with different physiochemical properties and functions. Exposure of alfalfa (Medicago sativa) seedlings to excess copper or cadmium ions activated four distinct mitogen-activated protein kinases (MAPKs): SIMK, MMK2, MMK3, and SAMK. Comparison of the kinetics of MAPK activation revealed that SIMK, MMK2, MMK3, and SAMK are very rapidly activated by copper ions, while cadmium ions induced delayed MAPK activation. In protoplasts, the MAPK kinase SIMKK specifically mediated activation of SIMK and SAMK but not of MMK2 and MMK3. Moreover, SIMKK only conveyed MAPK activation by CuCl(2) but not by CdCl(2). These results suggest that plants respond to heavy metal stress by induction of several distinct MAPK pathways and that excess amounts of copper and cadmium ions induce different cellular signaling mechanisms in roots.  相似文献   
83.
This mini-review summarizes results of studies on the oxidation of proteins and low-density lipoprotein (LDL) by various mixed-function oxidation (MFO) systems. Oxidation of LDL by the O2/FeCl3/H2O2/ascorbate MFO system is dependent on all four components and is much greater when reactions are carried out in the presence of a physiological bicarbonate/CO2 buffer system as compared to phosphate buffer. However, FeCl3 in this system could be replaced by hemin or the heme-containing protein, hemoglobin, or cytochrome c. Oxidation of LDL by the O2/cytochrome P450 cytochrome c reductase/NADPH/FeCl3 MFO system is only slightly higher (25%) in the bicarbonate/CO2 buffer as compared to phosphate buffer, but is dependent on all components except FeCl3. Omission of FeCl3 led to a 60% loss of activity. These results suggest that peroxymonobicarbonate and/or free radical derivatives of bicarbonate ion and/or CO2 might contribute to LDL oxidation by these MFO systems.  相似文献   
84.
The number of diabetic patients is increasing every year, and new model animals are required to study the diverse aspects of this disease. An experimental obese animal model has reportedly been obtained by injecting monosodium glutamate (MSG) to a mouse. We found that ICR-MSG mice on which the same method was used developed glycosuria. Both female and male mice were observed to be obese but had no polyphagia, and were glycosuric by 29 weeks of age, with males having an especially high rate of incidence (70.0%). Their blood concentrations of glucose, insulin, total cholesterol, and triglycerides were higher than in the control mice at 29 weeks. These high concentrations appeared in younger males more often than in females, and were severe in adult males. Also, the mice at 54 weeks of age showed obvious obesity and increased concentrations of glucose, insulin, and total cholesterol in the blood. The pathological study of ICR-MSG female and male mice at 29 weeks of age showed hypertrophy of the pancreatic islet. This was also observed in most of these mice at 54 weeks. It was recognized as a continuation of the condition of diabetes mellitus. From the above results, these mice are considered to be useful as new experimental model animals developing a high rate of obese type 2 (non-insulin dependent) diabetes mellitus without polyphagia.  相似文献   
85.
We found that a mouse homolog of human DNA polymerase delta interacting protein 38, referred to as Mitogenin I in this paper, and mitochondrial single-stranded DNA-binding protein (mtSSB), identified as upregulated genes in the heart of mice with juvenile visceral steatosis, play a role in the regulation of mitochondrial morphology. We demonstrated that overexpression of Mitogenin I or mtSSB increased elongated or fragmented mitochondria in mouse C2C12 myoblast cells, respectively. On the other hand, the silencing of Mitogenin I or mtSSB by RNA interference led to an increase in fragmented or elongated mitochondria in the cells, respectively, suggesting that Mitogenin I and mtSSB are involved in the processes of mitochondrial fusion and fission, respectively. In addition, we showed that the silencing of Mitogenin I resulted in an increase in the number of trypan blue-positive cells and the silencing of mtSSB resulted in an enhancement of the sensitivity of the cells to apoptotic stimulation by etoposide. The present results demonstrated that these proteins play a role in cell survival.  相似文献   
86.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   
87.
The inhibitory mechanism of tea catechins for allergy remains undefined. We studied the effect of catechins, mainly EGCG, on the activation of mast cell line canine cutaneous mastocytoma cells (CM-MC). Compound 48/80 induced the degranulation in CM-MC dose dependently, whereas its release of beta-hexosaminidase was inhibited by EGCG and O-methylated EGCG (EGCG-Me). Both catechins were found to inhibit intracellular ROS generation dose dependently together with DPI. Intracellular ROS generation in human polymorphonuclear leukocytes was also inhibited by EGCG. Neither L-NAME, ebeselen nor NAC inhibited ROS generation. From the Western blot analysis of the subunits components of NADPH oxidase, we detected cytosolic subunits; p47(phox), p67(phox), p40(phox), rac2 and membrane subunits; gp91(phox), p22(phox) in CM-MC. Cytosolic subunits were translocated from cytosol to membrane time dependently after stimulation with compound 48/80. EGCG and DPI inhibited cytosolic subunits from translocating into membrane. These data suggest that EGCG inhibits the activation of NADPH oxidase in CM-MC.  相似文献   
88.
The cells of the marine bacterium strain C-21, which is phylogenetically closely related to Arenibacter troitsensis, accumulate iodine in the presence of glucose and iodide (I). In this study, the detailed mechanism of iodine uptake by C-21 was determined using a radioactive iodide tracer, 125I. In addition to glucose, oxygen and calcium ions were also required for the uptake of iodine. The uptake was not inhibited or was only partially inhibited by various metabolic inhibitors, whereas reducing agents and catalase strongly inhibited the uptake. When exogenous glucose oxidase was added to the cell suspension, enhanced uptake of iodine was observed. The uptake occurred even in the absence of glucose and oxygen if hydrogen peroxide was added to the cell suspension. Significant activity of glucose oxidase was found in the crude extracts of C-21, and it was located mainly in the membrane fraction. These findings indicate that hydrogen peroxide produced by glucose oxidase plays a key role in the uptake of iodine. Furthermore, enzymatic oxidation of iodide strongly stimulated iodine uptake in the absence of glucose. Based on these results, the mechanism was considered to consist of oxidation of iodide to hypoiodous acid by hydrogen peroxide, followed by passive translocation of this uncharged iodine species across the cell membrane. Interestingly, such a mechanism of iodine uptake is similar to that observed in iodine-accumulating marine algae.  相似文献   
89.
Mononuclear cells infiltrating the interstitium are involved in renal tubulointerstitial injury. The unilateral ureteral obstruction (UUO) is an established experimental model of renal interstitial inflammation. In our previous study, we postulated that L-selectin on monocytes is involved in their infiltration into the interstitium by UUO and that a sulfated glycolipid, sulfatide, is the physiological L-selectin ligand in the kidney. Here we tested the above hypothesis using sulfatide- and L-selectin-deficient mice. Sulfatide-deficient mice were generated by gene targeting of the cerebroside sulfotransferase (Cst) gene. Although the L-selectin-IgG chimera protein specifically bound to sulfatide fraction in acidic lipids from wild-type kidney, it did not show such binding in fractions of Cst(-/-) mice kidney, indicating that sulfatide is the major L-selectin-binding glycolipid in the kidney. The distribution of L-selectin ligand in wild-type mice changed after UUO; sulfatide was relocated from the distal tubules to the peritubular capillaries where monocytes infiltrate, suggesting that sulfatide relocated to the endothelium after UUO interacted with L-selectin on monocytes. In contrast, L-selectin ligand was not detected in Cst(-/-) mice irrespective of UUO treatment. Compared with wild-type mice, Cst(-/-) mice showed a considerable reduction in the number of monocytes/macrophages that infiltrated the interstitium after UUO. The number of monocytes/macrophages was also reduced to a similar extent in L-selectin(-/-) mice. Our results suggest that sulfatide is a major L-selectin-binding molecule in the kidney and that the interaction between L-selectin and sulfatide plays a critical role in monocyte infiltration into the kidney interstitium.  相似文献   
90.
The t(8;13) translocation, found in a rare and aggressive type of stem cell myeloproliferative disorder, leads to the generation of a fusion protein between the N-terminal gene product of fused in myeloproliferative disorders (FIM)/ZNF198 and the fibroblast growth factor receptor 1 (FGFR1) kinase domain. The chimeric protein was reported to have constitutively activated tyrosine kinase activity. However, little is known about a role of FIM in hematopoietic cell regulation. Here we show that FIM protein is ubiquitously expressed in mouse embryonic tissues but much less in hematopoietic cells. We also show that forced expression of FIM inhibits the emergence of hematopoietic cells in the cultured mouse aorta-gonad-mesonephros (AGM) region on embryonic day (E) 11.5, where definitive hematopoiesis is first found during embryogenesis. These results suggest that the expression level of FIM determines the development of hematopoiesis during mouse ontogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号